Elizabeth Humphreys

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7121652/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Halting the Groundwater Decline in North-West India—Which Crop Technologies will be Winners?. Advances in Agronomy, 2010, , 155-217.	2.4	216
2	Optimizing intensive cereal-based cropping systems addressing current and future drivers of agricultural change in the northwestern Indo-Gangetic Plains of India. Agriculture, Ecosystems and Environment, 2013, 177, 85-97.	2.5	196
3	The Happy Seeder enables direct drilling of wheat into rice stubble. Australian Journal of Experimental Agriculture, 2007, 47, 844.	1.0	161
4	Effect of water management on dry seeded and puddled transplanted rice. Part 1: Crop performance. Field Crops Research, 2011, 120, 112-122.	2.3	142
5	The effect of rice straw mulch on evapotranspiration, transpiration and soil evaporation of irrigated wheat in Punjab, India. Agricultural Water Management, 2011, 98, 1847-1855.	2.4	141
6	Development and evaluation of the Turbo Happy Seeder for sowing wheat into heavy rice residues in NW India. Field Crops Research, 2015, 184, 201-212.	2.3	134
7	Effect of water management on dry seeded and puddled transplanted rice. Field Crops Research, 2011, 120, 123-132.	2.3	133
8	Growth, yield and water productivity of zero till wheat as affected by rice straw mulch and irrigation schedule. Field Crops Research, 2011, 121, 209-225.	2.3	121
9	Evaluation of options for increasing yield and water productivity of wheat in Punjab, India using the DSSAT-CSM-CERES-Wheat model. Agricultural Water Management, 2008, 95, 1099-1110.	2.4	94
10	Integration of conservation agriculture with best management practices for improving system performance of the rice–wheat rotation in the Eastern Indo-Gangetic Plains of India. Agriculture, Ecosystems and Environment, 2014, 195, 68-82.	2.5	86
11	Evaluation of the effects of mulch on optimum sowing date and irrigation management of zero till wheat in central Punjab, India using APSIM. Field Crops Research, 2016, 197, 83-96.	2.3	65
12	Crop performance in permanent raised bed rice–wheat cropping system in Punjab, India. Field Crops Research, 2009, 110, 1-20.	2.3	64
13	Evaluation and application of ORYZA2000 for irrigation scheduling of puddled transplanted rice in north west India. Field Crops Research, 2011, 122, 104-117.	2.3	63
14	The effects of mulch and irrigation management on wheat in Punjab, India—Evaluation of the APSIM model. Field Crops Research, 2011, 124, 1-13.	2.3	61
15	Evaluation of tradeoffs in land and water productivity of dry seeded rice as affected by irrigation schedule. Field Crops Research, 2012, 128, 180-190.	2.3	48
16	Options for increasing the productivity of the rice–wheat system of north-west India while reducing groundwater depletion. Part 1. Rice variety duration, sowing date and inclusion of mungbean. Field Crops Research, 2015, 173, 68-80.	2.3	48
17	Options for increasing the productivity of the rice–wheat system of north west India while reducing groundwater depletion. Part 2. Is conservation agriculture the answer?. Field Crops Research, 2015, 173, 81-94.	2.3	41
18	Effects of tillage and mulch on the growth, yield and irrigation water productivity of a dry seeded rice-wheat cropping system in north-west India. Field Crops Research, 2016, 196, 219-236.	2.3	39

Elizabeth Humphreys

#	Article	IF	CITATIONS
19	Growth, yield and nitrogen use efficiency of dry-seeded rice as influenced by nitrogen and seed rates in Bangladesh. Field Crops Research, 2016, 186, 18-31.	2.3	39
20	Establishment method effects on crop performance and water productivity of irrigated rice in the tropics. Field Crops Research, 2014, 166, 112-127.	2.3	38
21	Intensification and diversification increase land and water productivity and profitability of rice-based cropping systems on the High Ganges River Floodplain of Bangladesh. Field Crops Research, 2017, 209, 10-26.	2.3	30
22	Loss of ammonia after application of urea at different times to dry-seeded, irrigated rice. Fertilizer Research, 1988, 16, 47-57.	0.5	29
23	Comparison of dry seeded and puddled transplanted rainy season rice on the High Ganges River Floodplain of Bangladesh. European Journal of Agronomy, 2018, 96, 120-130.	1.9	22
24	Simulation of the evaporation of soil water beneath a wheat crop canopy. Agricultural Water Management, 2014, 135, 19-26.	2.4	21
25	Effects of time of urea application on combine-sown Calrose rice in south-east Australia. II. Mineral nitrogen transformations in the soil-water system. Australian Journal of Agricultural Research, 1987, 38, 113.	1.5	21
26	Effects of time of urea application on combine-sown Calrose rice in south-east Australia. I. Crop response and N uptake. Australian Journal of Agricultural Research, 1987, 38, 101.	1.5	20
27	Optimizing sowing management for short duration dry seeded aman rice on the High Ganges River Floodplain of Bangladesh. Field Crops Research, 2014, 169, 77-88.	2.3	18
28	Estimating soil evaporation in dry seeded rice and wheat crops after wetting events. Agricultural Water Management, 2019, 217, 98-106.	2.4	13
29	Optimum sowing date and cultivar duration of dry-seeded boro on the High Ganges River Floodplain of Bangladesh. Field Crops Research, 2016, 190, 91-102.	2.3	9
30	Effects of tillage and mulch on soil evaporation in a dry seeded rice-wheat cropping system. Soil and Tillage Research, 2021, 209, 104976.	2.6	7
31	Does wet seeding combined with Sub1 varieties increase yield in submergence prone lowlands of West Africa?. Field Crops Research, 2022, 276, 108375.	2.3	5