Abel SantamarÃ-a

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7121094/publications.pdf

Version: 2024-02-01

164 papers 4,811 citations

36 h-index 60 g-index

173 all docs

173 docs citations

times ranked

173

5395 citing authors

#	Article	IF	CITATIONS
1	Quinolinic acid is a potent lipid peroxidant in rat brain homogenates. Neurochemical Research, 1991, 16, 1139-1143.	3.3	232
2	The Antioxidant Mechanisms Underlying the Aged Garlic Extract- and S-Allylcysteine-Induced Protection. Oxidative Medicine and Cellular Longevity, 2012, 2012, 1-16.	4.0	219
3	3-Nitropropionic Acid as a Tool to Study the Mechanisms Involved in Huntington's Disease: Past, Present and Future. Molecules, 2010, 15, 878-916.	3.8	163
4	Increased Formation of Reactive Oxygen Species, but No Changes in Glutathione Peroxidase Activity, in Striata of Mice Transgenic for the Huntington's Disease Mutation. Neurochemical Research, 2004, 29, 729-733.	3.3	140
5	S-Allylcysteine, a garlic-derived antioxidant, ameliorates quinolinic acid-induced neurotoxicity and oxidative damage in rats. Neurochemistry International, 2004, 45, 1175-1183.	3.8	140
6	Quinolinic acid induces oxidative stress in rat brain synaptosomes. NeuroReport, 2001, 12, 871-874.	1.2	127
7	Quinolinic Acid, an Endogenous Molecule Combining Excitotoxicity, Oxidative Stress and Other Toxic Mechanisms. International Journal of Tryptophan Research, 2012, 5, IJTR.S8158.	2.3	119
8	MK-801, an receptor antagonist, blocks quinolinic acid-induced lipid peroxidation in rat corpus striatum. Neuroscience Letters, 1993, 159, 51-54.	2.1	118
9	Excitotoxic damage, disrupted energy metabolism, and oxidative stress in the rat brain: antioxidant and neuroprotective effects of ⟨scp⟩l⟨ scp⟩â€carnitine. Journal of Neurochemistry, 2008, 105, 677-689.	3.9	108
10	Homocysteine-induced brain lipid peroxidation: Effects of NMDA receptor blockade, antioxidant treatment, and nitric oxide synthase inhibition. Neurotoxicity Research, 2003, 5, 237-243.	2.7	100
11	In vivo hydroxyl radical formation after quinolinic acid infusion into rat corpus striatum. NeuroReport, 2001, 12, 2693-2696.	1.2	96
12	Protective effects of the antioxidant selenium on quinolinic acidâ€induced neurotoxicity in rats: ⟨i⟩in vitro⟨ i⟩ and ⟨i⟩in vivo⟨ i⟩ studies. Journal of Neurochemistry, 2003, 86, 479-488.	3.9	95
13	3-Hydroxykynurenine: An intriguing molecule exerting dual actions in the Central Nervous System. NeuroToxicology, 2013, 34, 189-204.	3.0	92
14	Thallium Toxicity: General Issues, Neurological Symptoms, and Neurotoxic Mechanisms. Advances in Neurobiology, 2017, 18, 345-353.	1.8	80
15	S-Allylcysteine prevents amyloid- \hat{l}^2 peptide-induced oxidative stress in rat hippocampus and ameliorates learning deficits. European Journal of Pharmacology, 2004, 489, 197-202.	3.5	73
16	On the antioxidant, neuroprotective and anti-inflammatory properties of S-allyl cysteine: An update. Neurochemistry International, 2015, 89, 83-91.	3.8	72
17	Protective effect of S-allylcysteine on 3-nitropropionic acid-induced lipid peroxidation and mitochondrial dysfunction in rat brain synaptosomes. Brain Research Bulletin, 2006, 68, 379-383.	3.0	68
18	Molecular Targets of Manganese-Induced Neurotoxicity: A Five-Year Update. International Journal of Molecular Sciences, 2021, 22, 4646.	4.1	68

#	Article	IF	CITATIONS
19	S-Allylcysteine prevents the rat from 3-nitropropionic acid-induced hyperactivity, early markers of oxidative stress and mitochondrial dysfunction. Neuroscience Research, 2006, 56, 39-44.	1.9	66
20	Redox Signaling, Neuroinflammation, and Neurodegeneration. Antioxidants and Redox Signaling, 2018, 28, 1626-1651.	5.4	62
21	Protective effect of l-kynurenine and probenecid on 6-hydroxydopamine-induced striatal toxicity in rats: Implications of modulating kynurenate as a protective strategy. Neurotoxicology and Teratology, 2011, 33, 303-312.	2.4	59
22	Comparative analysis of superoxide dismutase activity between acute pharmacological models and a transgenic mouse model of Huntington's disease. Neurochemical Research, 2001, 26, 419-424.	3.3	57
23	The natural xanthone α-mangostin reduces oxidative damage in rat brain tissue. Nutritional Neuroscience, 2009, 12, 35-42.	3.1	55
24	Delayed effects of thallium in the rat brain: Regional changes in lipid peroxidation and behavioral markers, but moderate alterations in antioxidants, after a single administration. Food and Chemical Toxicology, 2005, 43, 1037-1045.	3.6	52
25	Lipid peroxidation, mitochondrial dysfunction and neurochemical and behavioural deficits in different neurotoxic models: Protective role of S-allylcysteine. Free Radical Research, 2008, 42, 892-902.	3.3	52
26	Kynurenine Pathway and Disease: An Overview. CNS and Neurological Disorders - Drug Targets, 2007, 6, 398-410.	1.4	49
27	Cannabinoid receptor agonists reduce the short-term mitochondrial dysfunction and oxidative stress linked to excitotoxicity in the rat brain. Neuroscience, 2015, 285, 97-106.	2.3	48
28	Evaluation of oxidative stress in d-serine induced nephrotoxicity. Toxicology, 2007, 229, 123-135.	4.2	47
29	Protective effect of systemic l-kynurenine and probenecid administration on behavioural and morphological alterations induced by toxic soluble amyloid beta (25–35) in rat hippocampus. Behavioural Brain Research, 2010, 210, 240-250.	2.2	46
30	Copper blocks quinolinic acid neurotoxicity in rats: contribution of antioxidant systems. Free Radical Biology and Medicine, 2003, 35, 418-427.	2.9	40
31	Neurochemical and behavioral effects elicited by bupropion and diethylpropion in rats. Behavioural Brain Research, 2010, 211, 132-139.	2.2	40
32	Time-related changes in constitutive and inducible nitric oxide synthases in the rat striatum in a model of Huntington's disease. NeuroToxicology, 2007, 28, 1200-1207.	3.0	38
33	S-allyl cysteine protects against MPTP-induced striatal and nigral oxidative neurotoxicity in mice: Participation of Nrf2. Free Radical Research, 2014, 48, 159-167.	3.3	38
34	Targeting oxidative/nitrergic stress ameliorates motor impairment, and attenuates synaptic mitochondrial dysfunction and lipid peroxidation in two models of Huntington's disease. Behavioural Brain Research, 2009, 199, 210-217.	2.2	37
35	Protective Effect of Tert-Butylhydroquinone on the Quinolinic-Acid-Induced Toxicity in Rat Striatal Slices: Role of the Nrf2-Antioxidant Response Element Pathway. NeuroSignals, 2010, 18, 24-31.	0.9	37
36	Iron and manganese-related CNS toxicity: mechanisms, diagnosis and treatment. Expert Review of Neurotherapeutics, 2019, 19, 243-260.	2.8	37

3

#	Article	IF	CITATIONS
37	Nomega-nitro-L-arginine, a nitric oxide synthase inhibitor, antagonizes quinolinic acid-induced neurotoxicity and oxidative stress in rat striatal slices. Neurochemical Research, 1999, 24, 843-848.	3.3	36
38	Primary cultured astrocytes from old rats are capable to activate the Nrf2 response against MPP+ toxicity after tBHQ pretreatment. Neurobiology of Aging, 2014, 35, 1901-1912.	3.1	35
39	Oxidative Stress, Disrupted Energy Metabolism, and Altered Signaling Pathways in Glutaryl-CoA Dehydrogenase Knockout Mice: Potential Implications of Quinolinic Acid Toxicity in the Neuropathology of Glutaric Acidemia Type I. Molecular Neurobiology, 2016, 53, 6459-6475.	4.0	35
40	Manganese-induced neurodegenerative diseases and possible therapeutic approaches. Expert Review of Neurotherapeutics, 2020, 20, 1109-1121.	2.8	35
41	The impact of manganese on neurotransmitter systems. Journal of Trace Elements in Medicine and Biology, 2020, 61, 126554.	3.0	35
42	Cytoplasmic calcium mediates oxidative damage in an excitotoxic /energetic deficit synergic model in rats. European Journal of Neuroscience, 2008, 27, 1075-1085.	2.6	31
43	Pharmacological and Neurotoxicological Actions Mediated By Bupropion and Diethylpropion. International Review of Neurobiology, 2009, 88, 223-255.	2.0	30
44	Early modulation of the transcription factor Nrf2 in rodent striatal slices by quinolinic acid, a toxic metabolite of the kynurenine pathway. Neuroscience, 2014, 260, 130-139.	2.3	29
45	Thallium-Induced Toxicity in Rat Brain Crude Synaptosomal/Mitochondrial Fractions is Sensitive to Anti-excitatory and Antioxidant Agents. Neurotoxicity Research, 2018, 33, 634-640.	2.7	29
46	Selenium reduces the proapoptotic signaling associated to NF-κB pathway and stimulates glutathione peroxidase activity during excitotoxic damage produced by quinolinate in rat corpus striatum. Synapse, 2005, 58, 258-266.	1.2	28
47	The Janus faces of 3-hydroxykynurenine: Dual redox modulatory activity and lack of neurotoxicity in the rat striatum. Brain Research, 2014, 1589, 1-14.	2.2	28
48	Comparing the effects of endogenous and synthetic cannabinoid receptor agonists on survival of gastric cancer cells. Life Sciences, 2016, 165, 56-62.	4.3	28
49	Adipotropic effects of heavy metals and their potential role in obesity. Faculty Reviews, 2021, 10, 32.	3.9	28
50	Ferroptosis as a mechanism of non-ferrous metal toxicity. Archives of Toxicology, 2022, 96, 2391-2417.	4.2	28
51	Time-course correlation of early toxic events in three models of striatal damage: Modulation by proteases inhibition. Neurochemistry International, 2010, 56, 834-842.	3.8	26
52	Hepatic megalocytosis due to vanadium inhalation: participation of oxidative stress. Toxicology and Industrial Health, 2012, 28, 353-360.	1.4	26
53	A venom extract from the sea anemone Bartholomea annulata produces haemolysis and lipid peroxidation in mouse erythrocytes. Toxicology, 2002, 173, 221-228.	4.2	25
54	Alpha-mangostin induces changes in glutathione levels associated with glutathione peroxidase activity in rat brain synaptosomes. Nutritional Neuroscience, 2012, 15, 13-19.	3.1	25

#	Article	IF	CITATIONS
55	Chronic exposure to methylmercury induces puncta formation in cephalic dopaminergic neurons in Caenorhabditis elegans. NeuroToxicology, 2020, 77, 105-113.	3.0	25
56	Antioxidant strategy to rescue synaptosomes from oxidative damage and energy failure in neurotoxic models in rats: protective role of S-allylcysteine. Journal of Neural Transmission, 2010, 117, 35-44.	2.8	24
57	The Pharmacological Inhibition of Fatty Acid Amide Hydrolase Prevents Excitotoxic Damage in the Rat Striatum: Possible Involvement of CB1 Receptors Regulation. Molecular Neurobiology, 2019, 56, 844-856.	4.0	24
58	Toxic synergism between quinolinic acid and organic acids accumulating in glutaric acidemia type I and in disorders of propionate metabolism in rat brain synaptosomes: Relevance for metabolic acidemias. Neuroscience, 2015, 308, 64-74.	2.3	23
59	Tert-buthylhydroquinone pre-conditioning exerts dual effects in old female rats exposed to 3-nitropropionic acid. Redox Biology, 2017, 12, 610-624.	9.0	23
60	Cannabinoid-profiled agents improve cell survival via reduction of oxidative stress and inflammation, and Nrf2 activation in a toxic model combining hyperglycemia+ ${\rm A\hat{l}^21}$ -42 peptide in rat hippocampal neurons. Neurochemistry International, 2020, 140, 104817.	3.8	23
61	Sirtuins as molecular targets, mediators, and protective agents in metal-induced toxicity. Archives of Toxicology, 2021, 95, 2263-2278.	4.2	23
62	Role of Epigenetics and Oxidative Stress in Gliomagenesis. CNS and Neurological Disorders - Drug Targets, 2018, 16, 1090-1098.	1.4	23
63	The N-Methyl- <scp>d</scp> -Aspartate Receptor Antagonist MK-801 Prevents Thallium-Induced Behavioral and Biochemical Alterations in the Rat Brain. International Journal of Toxicology, 2015, 34, 505-513.	1.2	22
64	Melatonin and multiple sclerosis: antioxidant, anti-inflammatory and immunomodulator mechanism of action. Inflammopharmacology, 2022, 30, 1569-1596.	3.9	22
65	S-allylcysteine reduces the MPTP-induced striatal cell damage via inhibition of pro-inflammatory cytokine tumor necrosis factor- $\hat{\mathbf{l}}_{\pm}$ and inducible nitric oxide synthase expressions in mice. Phytomedicine, 2010, 18, 65-73.	5.3	21
66	A Cannabinoid Receptor-Mediated Mechanism Participates in the Neuroprotective Effects of Oleamide Against Excitotoxic Damage in Rat Brain Synaptosomes and Cortical Slices. Neurotoxicity Research, 2020, 37, 126-135.	2.7	21
67	Gut Microbiota as a Potential Player in Mn-Induced Neurotoxicity. Biomolecules, 2021, 11, 1292.	4.0	21
68	An Update on the Critical Role of α-Synuclein in Parkinson's Disease and Other Synucleinopathies: from Tissue to Cellular and Molecular Levels. Molecular Neurobiology, 2022, 59, 620-642.	4.0	21
69	Early Changes in Oxidative Stress Markers in a Rat Model of Acute Stress: Effect of l-carnitine on the Striatum. Basic and Clinical Pharmacology and Toxicology, 2011, 109, 123-129.	2.5	20
70	On the in vivo early toxic properties of Aβ25–35 peptide in the rat hippocampus: Involvement of the Receptor-for-Advanced Glycation-End-Products and changes in gene expression. Neurotoxicology and Teratology, 2011, 33, 288-296.	2.4	20
71	The crude venom from the sea anemone Stichodactyla helianthus induces haemolysis and slight peroxidative damage in rat and human erythrocytes. Toxicology in Vitro, 2007, 21, 398-402.	2.4	19
72	Diazepam Blocks Striatal Lipid Peroxidation and Improves Stereotyped Activity in a Rat Model of Acute Stress. Basic and Clinical Pharmacology and Toxicology, 2011, 109, 350-356.	2.5	19

#	Article	IF	CITATIONS
73	Quinolinic acid and glutamatergic neurodegeneration in Caenorhabditis elegans. NeuroToxicology, 2018, 67, 94-101.	3.0	18
74	Comparing the Neuroprotective Effects of Caffeic Acid in Rat Cortical Slices and Caenorhabditis elegans: Involvement of Nrf2 and SKN-1 Signaling Pathways. Neurotoxicity Research, 2020, 37, 326-337.	2.7	18
75	Peroxynitrite decomposition catalyst, iron metalloporphyrin, reduces quinolinate-induced neurotoxicity in rats. Synapse, 2004, 54, 233-238.	1,2	17
76	Compounds from Ilex paraguariensis extracts have antioxidant effects in the brains of rats subjected to chronic immobilization stress. Applied Physiology, Nutrition and Metabolism, 2017, 42, 1172-1178.	1.9	17
77	Modeling the Interaction between Quinolinate and the Receptor for Advanced Glycation End Products (RAGE): Relevance for Early Neuropathological Processes. PLoS ONE, 2015, 10, e0120221.	2.5	17
78	On the Relationship Between the Light/Dark Cycle, Melatonin and Oxidative Stress. Current Pharmaceutical Design, 2015, 21, 3477-3488.	1.9	17
79	Mercury and cancer: Where are we now after two decades of research?. Food and Chemical Toxicology, 2022, 164, 113001.	3.6	17
80	Selenium-induced antioxidant protection recruits modulation of thioredoxin reductase during excitotoxic/pro-oxidant events in the rat striatum. Neurochemistry International, 2012, 61, 195-206.	3.8	16
81	Extra-Virgin Olive Oil Modifies the Changes Induced in Non-Nervous Organs and Tissues by Experimental Autoimmune Encephalomyelitis Models. Nutrients, 2019, 11, 2448.	4.1	16
82	Quinolinic acid neurotoxicity: In vivo increased copper and manganese content in rat corpus striatum after quinolinate intrastriatal injection. Toxicology Letters, 1996, 87, 113-119.	0.8	15
83	Early nerve ending rescue from oxidative damage and energy failure by l-carnitine as post-treatment in two neurotoxic models in rat: recovery of antioxidant and reductive capacities. Experimental Brain Research, 2009, 197, 287-296.	1.5	15
84	Biomarkers of Cell Damage Induced by Oxidative Stress in Parkinsons Disease and Related Models. Central Nervous System Agents in Medicinal Chemistry, 2010, 10, 278-286.	1,1	15
85	Intracerebral injection of oil cyst content of human craniopharyngioma (oil machinery fluid) as a toxic model in the rat brain. Acta Histochemica, 2014, 116, 448-456.	1.8	15
86	Altered levels of brain neurotransmitter from new born rabbits with intrauterine restriction. Neuroscience Letters, 2015, 584, 60-65.	2.1	15
87	Experimental Evidence that 3-Methylglutaric Acid Disturbs Mitochondrial Function and Induced Oxidative Stress in Rat Brain Synaptosomes: New Converging Mechanisms. Neurochemical Research, 2016, 41, 2619-2626.	3.3	15
88	Induction of a Proinflammatory Response in Cortical Astrocytes by the Major Metabolites Accumulating in HMG-CoA Lyase Deficiency: the Role of ERK Signaling Pathway in Cytokine Release. Molecular Neurobiology, 2016, 53, 3586-3595.	4.0	15
89	Acute restraint stress reduces hippocampal oxidative damage and behavior in rats: Effect of S-allyl cysteine. Life Sciences, 2015, 135, 165-172.	4.3	14
90	On the effects of CP 55-940 and other cannabinoid receptor agonists in C6 and U373 cell lines. Toxicology in Vitro, 2015, 29, 1941-1951.	2.4	14

#	Article	IF	CITATIONS
91	The effect of WIN 55,212-2 suggests a cannabinoid-sensitive component in the early toxicity induced by organic acids accumulating in glutaric acidemia type I and in related disorders of propionate metabolism in rat brain synaptosomes. Neuroscience, 2015, 310, 578-588.	2.3	14
92	Cannabinoids: Glutamatergic Transmission and Kynurenines. Advances in Neurobiology, 2016, 12, 173-198.	1.8	14
93	URB597 and the Cannabinoid WIN55,212-2 Reduce Behavioral and Neurochemical Deficits Induced by MPTP in Mice: Possible Role of Redox Modulation and NMDA Receptors. Neurotoxicity Research, 2017, 31, 532-544.	2.7	14
94	Comparison of the Toxic Effects of Quinolinic Acid and 3-Nitropropionic Acid in C. elegans: Involvement of the SKN-1 Pathway. Neurotoxicity Research, 2018, 33, 259-267.	2.7	14
95	Isolevuglandins (isoLGs) as toxic lipid peroxidation byproducts and their pathogenetic role in human diseases. Free Radical Biology and Medicine, 2021, 162, 266-273.	2.9	14
96	Comparative effects on rat primary astrocytes and C6 rat glioma cells cultures after 24-h exposure to silver nanoparticles (AgNPs). Journal of Nanoparticle Research, 2015, 17, 1.	1.9	13
97	URB597 reduces biochemical, behavioral and morphological alterations in two neurotoxic models in rats. Biomedicine and Pharmacotherapy, 2017, 88, 745-753.	5.6	13
98	Comparing the Effects of Chlorogenic Acid and Ilex paraguariensis Extracts on Different Markers of Brain Alterations in Rats Subjected to Chronic Restraint Stress. Neurotoxicity Research, 2019, 35, 373-386.	2.7	12
99	Neuroprotective effect of WIN55,212-2 against 3-nitropropionic acid-induced toxicity in the rat brain: involvement of CB1 and NMDA receptors. American Journal of Translational Research (discontinued), 2017, 9, 261-274.	0.0	12
100	Poly(ADP-ribose) polymerase-1 is involved in the neuronal death induced by quinolinic acid in rats. Neuroscience Letters, 2007, 425, 28-33.	2.1	11
101	Toxic Synergism Between Quinolinic Acid and Glutaric Acid in Neuronal Cells Is Mediated by Oxidative Stress: Insights to a New Toxic Model. Molecular Neurobiology, 2018, 55, 5362-5376.	4.0	11
102	Comparing the Effects of Ferulic Acid and Sugarcane Aqueous Extract in In Vitro and In Vivo Neurotoxic Models. Neurotoxicity Research, 2018, 34, 640-648.	2.7	11
103	Anandamide Reduces the Toxic Synergism Exerted by Quinolinic Acid and Glutaric Acid in Rat Brain Neuronal Cells. Neuroscience, 2019, 401, 84-95.	2.3	11
104	Probenecid: An Emerging Tool for Neuroprotection. CNS and Neurological Disorders - Drug Targets, 2013, 12, 1050-1065.	1.4	11
105	Cephalic Neuronal Vesicle Formation is Developmentally Dependent and Modified by Methylmercury and sti-1 in Caenorhabditis elegans. Neurochemical Research, 2020, 45, 2939-2948.	3.3	10
106	Thallium Toxicity in Caenorhabditis elegans: Involvement of the SKN-1 Pathway and Protection by S-Allylcysteine. Neurotoxicity Research, 2020, 38, 287-298.	2.7	10
107	Review of the mechanism underlying mefloquine-induced neurotoxicity. Critical Reviews in Toxicology, 2021, 51, 209-216.	3.9	10
108	Implications of Vitamin D in Multiple Sclerosis and Other Neurodegenerative Processes: Bibliometric Analysis and Systematic Review. CNS and Neurological Disorders - Drug Targets, 2019, 18, 478-490.	1.4	10

#	Article	IF	Citations
109	Early toxic effect of 6-hydroxydopamine on extracellular concentrations of neurotransmitters in the rat striatum: An in vivo microdialysis study. NeuroToxicology, 2010, 31, 715-723.	3.0	9
110	Comparing the effects of two neurotoxins in cortical astrocytes obtained from rats of different ages: involvement of oxidative damage. Journal of Applied Toxicology, 2014, 34, 127-138.	2.8	9
111	Protective effects of S-allyl cysteine on behavioral, morphological and biochemical alterations in rats subjected to chronic restraint stress: Antioxidant and anxiolytic effects. Journal of Functional Foods, 2017, 35, 105-114.	3.4	9
112	N,N' bis-(2-mercaptoethyl) isophthalamide induces developmental delay in Caenorhabditis elegans by promoting DAF-16 nuclear localization. Toxicology Reports, 2020, 7, 930-937.	3.3	9
113	Antioxidant Mechanisms in the Neuroprotective Action of Cemtirestat: Studies in Chemical Models, Liposomes and Rat Brain Cortical Slices. Neuroscience, 2020, 443, 206-217.	2.3	9
114	S-Allylcysteine Protects Against Excitotoxic Damage in Rat Cortical Slices Via Reduction of Oxidative Damage, Activation of Nrf2/ARE Binding, and BDNF Preservation. Neurotoxicity Research, 2020, 38, 929-940.	2.7	9
115	Combatting Nitrosative Stress and Inflammation with Novel Substituted Triazinoindole Inhibitors of Aldose Reductase in PC12 Cells Exposed to 6-Hydroxydopamine Plus High Glucose. Neurotoxicity Research, 2021, 39, 210-226.	2.7	9
116	Evaluating the risk of manganese-induced neurotoxicity of parenteral nutrition: review of the current literature. Expert Opinion on Drug Metabolism and Toxicology, 2021, 17, 581-593.	3.3	9
117	Early expression of the receptor for advanced glycation end products in a toxic model produced by 6-hydroxydopamine in the rat striatum. Chemico-Biological Interactions, 2016, 249, 10-18.	4.0	8
118	Protective effect of Yerba mate (Ilex paraguariensis St. Hill.) against oxidative damage in vitro in rat brain synaptosomal/mitochondrial P2 fractions. Journal of Functional Foods, 2017, 34, 447-452.	3.4	8
119	Ilex paraguariensis extracts reduce blood glucose, peripheral neuropathy and oxidative damage in male mice exposed to streptozotocin. Journal of Functional Foods, 2018, 44, 9-16.	3.4	8
120	Identification of specific pre-analytical quality control markers in plasma and serum samples. Analytical Methods, 2019, 11, 2259-2271.	2.7	8
121	Protective Effects of Novel Substituted Triazinoindole Inhibitors of Aldose Reductase and Epalrestat in Neuron-like PC12 Cells and BV2 Rodent Microglial Cells Exposed to Toxic Models of Oxidative Stress: Comparison with the Pyridoindole Antioxidant Stobadine. Neurotoxicity Research, 2021, 39, 588-597.	2.7	8
122	Iron porphyrinate Fe(TPPS) reduces brain cell damage in rats intrastriatally lesioned by quinolinate. Neurotoxicology and Teratology, 2008, 30, 510-519.	2.4	7
123	On the early toxic effect of quinolinic acid: Involvement of RAGE. Neuroscience Letters, 2010, 474, 74-78.	2.1	7
124	Garlic, Gastrointestinal Protection and Oxidative Stress. , 2017, , 275-288.		7
125	The antioxidant role of STAT3 in methylmercury-induced toxicity in mouse hypothalamic neuronal GT1-7Âcell line. Free Radical Biology and Medicine, 2021, 171, 245-259.	2.9	7
126	Neurotoxicity of Diethylpropion. Annals of the New York Academy of Sciences, 2002, 965, 214-224.	3.8	6

#	Article	IF	Citations
127	Induction of Neuroinflammatory Response and Histopathological Alterations Caused by Quinolinic Acid Administration in the Striatum of Glutaryl-CoA Dehydrogenase Deficient Mice. Neurotoxicity Research, 2018, 33, 593-606.	2.7	6
128	Oleamide Induces Cell Death in Glioblastoma RG2 Cells by a Cannabinoid Receptor–Independent Mechanism. Neurotoxicity Research, 2020, 38, 941-956.	2.7	6
129	Therapeutic Efficacy of the N,N′ Bis-(2-Mercaptoethyl) Isophthalamide Chelator for Methylmercury Intoxication in Caenorhabditis elegans. Neurotoxicity Research, 2020, 38, 133-144.	2.7	6
130	Chronic exposure to methylmercury enhances the anorexigenic effects of leptin in C57BL/6J male mice. Food and Chemical Toxicology, 2021, 147, 111924.	3.6	6
131	Developmental exposure to methylmercury and ADHD, a literature review of epigenetic studies. Environmental Epigenetics, 2021, 7, dvab014.	1.8	6
132	Huntington's disease and mitochondrial alterations: emphasis on experimental models. Journal of Bioenergetics and Biomembranes, 2010, 42, 207-215.	2.3	5
133	The Antiepileptic Drug Levetiracetam Protects Against Quinolinic Acid-Induced Toxicity in the Rat Striatum. Neurotoxicity Research, 2018, 33, 837-845.	2.7	5
134	The Role of Human LRRK2 in Methylmercury-Induced Inhibition of Microvesicle Formation of Cephalic Neurons in Caenorhabditis elegans. Neurotoxicity Research, 2020, 38, 751-764.	2.7	5
135	URB597 Prevents the Short-Term Excitotoxic Cell Damage in Rat Cortical Slices: Role of Cannabinoid 1 Receptors. Neurotoxicity Research, 2021, 39, 146-155.	2.7	5
136	The Role of Human LRRK2 in Acute Methylmercury Toxicity in Caenorhabditis elegans. Neurochemical Research, 2021, 46, 2991-3002.	3.3	5
137	Platinum nanoparticles Protect Against Lipopolysaccharide-Induced Inflammation in Microglial BV-2 Cells via Decreased Oxidative Damage and Increased Phagocytosis. Neurochemical Research, 2021, 46, 3325-3341.	3.3	5
138	The Endocannabinoid System in Caenorhabditis elegans. Reviews of Physiology, Biochemistry and Pharmacology, 2021, , 1 -31.	1.6	5
139	Alpha-Mangostin Alleviates the Short-term 6-Hydroxydopamine-Induced Neurotoxicity and Oxidative Damage in Rat Cortical Slices and in Caenorhabditis elegans. Neurotoxicity Research, 2022, 40, 573-584.	2.7	5
140	Lactose and Casein Cause Changes on Biomarkers of Oxidative Damage and Dysbiosis in an Experimental Model of Multiple Sclerosis. CNS and Neurological Disorders - Drug Targets, 2022, 21, 680-692.	1.4	5
141	Thallium Induces Antiproliferative and Cytotoxic Activity in Glioblastoma C6 and U373 Cell Cultures via Apoptosis and Changes in Cell Cycle. Neurotoxicity Research, 2022, 40, 814-824.	2.7	5
142	Bioactive Isomers of Conjugated Linoleic Acid Inhibit the Survival of Malignant Glioblastoma Cells But Not Primary Astrocytes. European Journal of Lipid Science and Technology, 2018, 120, 1700454.	1.5	4
143	Chronic exposure to methylmercury disrupts ghrelin actions in C57BL/6J mice. Food and Chemical Toxicology, 2021, 147, 111918.	3.6	4
144	Redox-active phytoconstituents ameliorate cell damage and inflammation in rat hippocampal neurons exposed to hyperglycemia+A \hat{l}^2 1-42 peptide. Neurochemistry International, 2021, 145, 104993.	3.8	4

#	Article	IF	Citations
145	S-allylcysteine induces cytotoxic effects in two human lung cancer cell lines via induction of oxidative damage, downregulation of Nrf2 and NF-κB, and apoptosis. Anti-Cancer Drugs, 2021, 32, 117-126.	1.4	4
146	On the Biomedical Properties of Endocannabinoid Degradation and Reuptake Inhibitors: Pre-clinical and Clinical Evidence. Neurotoxicity Research, 2021, 39, 2072-2097.	2.7	4
147	Protective Effects of Caffeic Acid on Quinolinic Acid-Induced Behavioral and Oxidative Alterations in Rats. Journal of Drug and Alcohol Research, 2015, 4, 1-5.	0.9	3
148	Ultrastructural characterization of craniopharyngioma at the tumor boundary: A structural comparison with an experimental toxic model using "oil machinery―fluid, with emphasis on Rosenthal fibers. Acta Histochemica, 2015, 117, 696-704.	1.8	2
149	A Novel Phospholipase A2 Isolated from Palythoa caribaeorum Possesses Neurotoxic Activity. Toxins, 2019, 11, 89.	3.4	2
150	Early Expression of Neuronal Dopaminergic Markers in a Parkinson's Disease Model in Rats Implanted with Enteric Stem Cells (ENSCs). CNS and Neurological Disorders - Drug Targets, 2020, 19, 148-162.	1.4	2
151	Ghrelin attenuates methylmercury-induced oxidative stress in neuronal cells. Molecular Neurobiology, 2022, 59, 2098-2115.	4.0	2
152	The Modulatory Role of sti-1 in Methylmercury-Induced Toxicity in Caenorhabditis elegans. Neurotoxicity Research, 2022, 40, 837-846.	2.7	2
153	Iron overload and neurodegenerative diseases: What can we learn from <i>Caenorhabditis elegans</i> ?. Toxicology Research and Application, 2022, 6, 239784732210918.	0.6	2
154	The Human LRRK2 Modulates the Age-Dependent Effects of Developmental Methylmercury Exposure in Caenorhabditis elegans. Neurotoxicity Research, 0 , , .	2.7	2
155	Olive Oil and Huntington's Disease. , 2015, , 719-731.		1
156	Potential Therapeutic Targets of the Endocannabinoid System in Common Neurodegenerative Disorders and Organic Acidemias. FIRE Forum for International Research in Education, 2017, 5, 232640981772366.	0.7	1
157	Generating Bacterial Foods in Toxicology Studies with Caenorhabditis elegans. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2020, 84, e94.	1.1	1
158	The Endocannabinoid System in the Central Nervous System: Emphasis on the Role of the Mitochondrial Cannabinoid Receptor 1 (mtCB1R)., 2021,, 1-23.		1
159	Electrochemical Detection of Neurotransmitters in the Brain and Other Molecules with Biological Activity in the Nervous System: Dopamine Analysis. Current Organic Chemistry, 2020, 24, 2498-2507.	1.6	1
160	Rat Brain Slices: An Optimum Biological Preparation for Acute Neurotoxicological Studies. Neuromethods, 2019, , 195-207.	0.3	0
161	Neurotoxicity of thallium: Old issues and new developments. Advances in Neurotoxicology, 2021, , 285-297.	1.9	0
162	Entrapment of chlorophyll from Chlorella vulgaris and Chlorella protothecoides into microporous silica synthesized by a sol-gel method. Journal of Physics Communications, 2021, 5, 105004.	1.2	0

#	Article	lF	CITATIONS
163	Thallium Neurotoxicity. , 2021, , 1-27.		О
164	Co-localization of the Receptor for Advanced Glycation End Products (RAGE) with S100 Calcium-Binding Protein B (S100B) in Human Umbilical Vein Endothelial. Journal of the Mexican Chemical Society, 2019, 63, .	0.6	0