Todd E Morgan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7121003/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Periodic Diet that Mimics Fasting Promotes Multi-System Regeneration, Enhanced Cognitive Performance, and Healthspan. Cell Metabolism, 2015, 22, 86-99.	16.2	635
2	A Diet Mimicking Fasting Promotes Regeneration and Reduces Autoimmunity and Multiple Sclerosis Symptoms. Cell Reports, 2016, 15, 2136-2146.	6.4	371
3	Fasting-mimicking diet and markers/risk factors for aging, diabetes, cancer, and cardiovascular disease. Science Translational Medicine, 2017, 9, .	12.4	363
4	Caloric restriction attenuates Aβ-deposition in Alzheimer transgenic models. Neurobiology of Aging, 2005, 26, 995-1000.	3.1	309
5	Vaccination with soluble Aβ oligomers generates toxicityâ€neutralizing antibodies. Journal of Neurochemistry, 2001, 79, 595-605.	3.9	309
6	Fasting-Mimicking Diet Reduces HO-1 to Promote TÂCell-Mediated Tumor Cytotoxicity. Cancer Cell, 2016, 30, 136-146.	16.8	289
7	Astrocytes and Microglia Respond to Estrogen with Increased apoE mRNAin Vivoandin Vitro. Experimental Neurology, 1997, 143, 313-318.	4.1	225
8	TGFâ€Î²1 is an organizer of responses to neurodgeneration. Journal of Cellular Biochemistry, 1993, 53, 314-322.	2.6	196
9	Glutamatergic Neurons in Rodent Models Respond to Nanoscale Particulate Urban Air Pollutants <i>in Vivo</i> and <i>in Vitro</i> . Environmental Health Perspectives, 2011, 119, 1003-1009.	6.0	174
10	Nrf2-regulated phase II enzymes are induced by chronic ambient nanoparticle exposure in young mice with age-related impairments. Free Radical Biology and Medicine, 2012, 52, 2038-2046.	2.9	136
11	Nanoscale Particulate Matter from Urban Traffic Rapidly Induces Oxidative Stress and Inflammation in Olfactory Epithelium with Concomitant Effects on Brain. Environmental Health Perspectives, 2016, 124, 1537-1546.	6.0	127
12	Aging and glial responses to lipopolysaccharide in vitro: greater induction of IL-1 and IL-6, but smaller induction of neurotoxicity. Experimental Neurology, 2003, 182, 135-141.	4.1	117
13	Toll-like receptor 4 in glial inflammatory responses to air pollution in vitro and in vivo. Journal of Neuroinflammation, 2017, 14, 84.	7.2	107
14	Prenatal Exposure to Urban Air Nanoparticles in Mice Causes Altered Neuronal Differentiation and Depression-Like Responses. PLoS ONE, 2013, 8, e64128.	2.5	103
15	Ambient ultrafine particles alter lipid metabolism and HDL anti-oxidant capacity in LDLR-null mice. Journal of Lipid Research, 2013, 54, 1608-1615.	4.2	95
16	Traffic-related air pollution impact on mouse brain accelerates myelin and neuritic aging changes with specificity for CA1 neurons. Neurobiology of Aging, 2017, 53, 48-58.	3.1	91
17	The perimenopausal aging transition in the female rat brain: decline in bioenergetic systems and synaptic plasticity. Neurobiology of Aging, 2015, 36, 2282-2295.	3.1	80
18	Short-term calorie and protein restriction provide partial protection from chemotoxicity but do not delay glioma progression. Experimental Gerontology, 2013, 48, 1120-1128.	2.8	71

TODD E MORGAN

#	Article	IF	CITATIONS
19	The APOE4 allele shows opposite sex bias in microbleeds and Alzheimer's disease of humans and mice. Neurobiology of Aging, 2016, 37, 47-57.	3.1	70
20	Toxicity of urban air pollution particulate matter in developing and adult mouse brain: Comparison of total and filter-eluted nanoparticles. Environment International, 2020, 136, 105510.	10.0	64
21	Urban air pollutants reduce synaptic function of <scp>CA</scp> 1 neurons via an <scp>NMDA</scp> /NÈ® pathway <i>in vitro</i> . Journal of Neurochemistry, 2013, 127, 509-519.	3.9	60
22	Urban traffic-derived nanoparticulate matter reduces neurite outgrowth via TNFα in vitro. Journal of Neuroinflammation, 2016, 13, 19.	7.2	58
23	Traffic-related air pollutants (TRAP-PM) promote neuronal amyloidogenesis through oxidative damage to lipid rafts. Free Radical Biology and Medicine, 2020, 147, 242-251.	2.9	56
24	Effects of ambient particulate matter on vascular tissue: a review. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 2020, 23, 319-350.	6.5	47
25	Traffic-related air pollution and brain development. AIMS Environmental Science, 2015, 2, 353-373.	1.4	41
26	Nanoparticulate matter exposure results in neuroinflammatory changes in the corpus callosum. PLoS ONE, 2018, 13, e0206934.	2.5	40
27	Kainic Acid and Decorticating Lesions Stimulate the Synthesis of C1q Protein in Adult Rat Brain. Journal of Neurochemistry, 1997, 68, 2046-2052.	3.9	38
28	Aging attenuates redox adaptive homeostasis and proteostasis in female mice exposed to traffic-derived nanoparticles (â€~vehicular smog'). Free Radical Biology and Medicine, 2018, 121, 86-97.	2.9	36
29	Fasting-mimicking diet prevents high-fat diet effect on cardiometabolic risk and lifespan. Nature Metabolism, 2021, 3, 1342-1356.	11.9	34
30	Air Pollution Alters Caenorhabditis elegans Development and Lifespan: Responses to Traffic-Related Nanoparticulate Matter. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2019, 74, 1189-1197.	3.6	27
31	Air Pollution Neurotoxicity in the Adult Brain: Emerging Concepts from Experimental Findings. Journal of Alzheimer's Disease, 2020, 76, 773-797.	2.6	27
32	Cell-based assays that predict in vivo neurotoxicity of urban ambient nano-sized particulate matter. Free Radical Biology and Medicine, 2019, 145, 33-41.	2.9	25
33	Adult mouse hippocampal transcriptome changes associated with long-term behavioral and metabolic effects of gestational air pollution toxicity. Translational Psychiatry, 2020, 10, 218.	4.8	23
34	Stroke Damage Is Exacerbated by Nano-Size Particulate Matter in a Mouse Model. PLoS ONE, 2016, 11, e0153376.	2.5	23
35	Air Pollution Particulate Matter Exposure and Chronic Cerebral Hypoperfusion and Measures of White Matter Injury in a Murine Model. Environmental Health Perspectives, 2021, 129, 87006.	6.0	22
36	Mouse brain transcriptome responses to inhaled nanoparticulate matter differed by sex and APOE in Nrf2-Nfkb interactions. ELife, 2020, 9, .	6.0	22

TODD E MORGAN

#	Article	IF	CITATIONS
37	Exposure to Nanoscale Particulate Matter from Gestation to Adulthood Impairs Metabolic Homeostasis in Mice. Scientific Reports, 2019, 9, 1816.	3.3	21
38	Age, sex, and cerebral microbleeds in EFAD Alzheimer disease mice. Neurobiology of Aging, 2021, 103, 42-51.	3.1	14
39	Air Pollution Particulate Matter Amplifies White Matter Vascular Pathology and Demyelination Caused by Hypoperfusion. Frontiers in Immunology, 2021, 12, 785519.	4.8	14
40	Progressive changes in regulation of apolipoproteins E and J in glial cultures during postnatal development and aging. Neuroscience Letters, 2004, 371, 199-204.	2.1	12
41	Hepatic but Not CNS-Expressed Human C-Reactive Protein Inhibits Experimental Autoimmune Encephalomyelitis in Transgenic Mice. Autoimmune Diseases, 2015, 2015, 1-8.	0.6	12
42	Nanoparticulate matter exposure results in white matter damage and an inflammatory microglial response in an experimental murine model. PLoS ONE, 2021, 16, e0253766.	2.5	12
43	Astrocytic estrogen receptors and impaired neurotrophic responses in a rat model of perimenopause. Frontiers in Aging Neuroscience, 2015, 7, 179.	3.4	11
44	Effects of Prolonged GRP78 Haploinsufficiency on Organ Homeostasis, Behavior, Cancer and Chemotoxic Resistance in Aged Mice. Scientific Reports, 2017, 7, 40919.	3.3	11
45	Cerebral cortex and blood transcriptome changes in mouse neonates prenatally exposed to air pollution particulate matter. Journal of Neurodevelopmental Disorders, 2021, 13, 30.	3.1	9
46	The <i>APOE</i> gene cluster responds to air pollution factors in mice with coordinated expression of genes that differs by age in humans. Alzheimer's and Dementia, 2021, 17, 175-190.	0.8	8
47	Urban Air Pollution Nanoparticles from LosÂAngeles: Recently Decreased Neurotoxicity. Journal of Alzheimer's Disease, 2021, 82, 307-316.	2.6	8
48	Age-related alteration in HNE elimination enzymes. Archives of Biochemistry and Biophysics, 2021, 699, 108749.	3.0	7
49	Age-changes in gene expression in primary mixed glia cultures from young vs. old rat cerebral cortex are modified by interactions with neurons. Brain, Behavior, and Immunity, 2012, 26, 797-802.	4.1	6
50	Diurnal variation in the proinflammatory activity of urban fine particulate matter (PM2.5) by in vitro assays. F1000Research, 0, 7, 596.	1.6	5
51	Diurnal variation in the proinflammatory activity of urban fine particulate matter (PM2.5) by in vitro assays. F1000Research, 2018, 7, 596.	1.6	4
52	Diurnal variation in the proinflammatory activity of urban fine particulate matter (PM2.5) by in vitro assays. F1000Research, 2018, 7, 596.	1.6	3
53	NOVEL GAMMA-SECRETASE MODULATOR REGULATES APP PROCESSING AND INFLAMMATORY RESPONSES IN NPM-EXPOSED MICE. Innovation in Aging, 2019, 3, S93-S93.	0.1	0
54	CAENORHABDITIS ELEGANS AS A MODEL OF AIR POLLUTION TOXICITY DURING DEVELOPMENT AND LIFESPAN. Innovation in Aging, 2019, 3, S97-S97.	0.1	0

TODD E MORGAN

#	Article	IF	CITATIONS
55	Early developmental exposure to air pollution increases the risk of Alzheimers disease and amyloid production: Studies in mouse and Caenorhabditis elegans. Alzheimer's and Dementia, 2020, 16, e043846.	0.8	0
56	Reduction of lipid peroxidase levels in EFAD mouse model. Alzheimer's and Dementia, 2020, 16, e044143.	0.8	0
57	Air Pollution Neurotoxicity in the Adult Brain: Emerging Concepts from Experimental Findings. Advances in Alzheimer's Disease, 2021, , .	0.2	0
58	Inhibiting Bach1 enhanced the activation of Nrf2 signaling and the degradation of HNE in response to oxidative stress Alzheimer's and Dementia, 2021, 17 Suppl 3, e053235.	0.8	0
59	Reductions in ApoE and GPx4 highlight the Alzheimer's disease lipid raft vulnerability Alzheimer's and Dementia, 2021, 17 Suppl 3, e054511.	0.8	0