
Subhadip Raychaudhuri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7120608/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In Silico Approach to Find an Optimal Strategy in Selective Targeting of Cancer Cells. Journal of Computer Science and Systems Biology, 2016, 9, .	0.0	1
2	Kinetic Monte Carlo Study of the Type 1/Type 2 Choice in Apoptosis Elucidates Selective Killing of Cancer Cells under Death Ligand Induction. Open Journal of Apoptosis, 2015, 04, 22-39.	1.5	1
3	Death ligand concentration and the membrane proximal signaling module regulate the type 1/type 2 choice in apoptotic death signaling. Systems and Synthetic Biology, 2014, 8, 83-97.	1.0	5
4	Low Probability Activation of Bax/Bak Can Induce Selective Killing of Cancer Cells by Generating Heterogeneity in Apoptosis. Journal of Healthcare Engineering, 2013, 4, 47-66.	1.9	6
5	Monte Carlo Study Elucidates the Type 1/Type 2 Choice in Apoptotic Death Signaling in Healthy and Cancer Cells. Cells, 2013, 2, 361-392.	4.1	3
6	Kinetic Monte Carlo Simulation in Biophysics and Systems Biology. , 2013, , .		2
7	The Problem of Antigen Affinity Discrimination in B-Cell Immunology. , 2013, 2013, 1-18.		4
8	Discrimination of membrane antigen affinity by B cells requires dominance of kinetic proofreading over serial engagement. Cellular and Molecular Immunology, 2012, 9, 62-74.	10.5	26
9	The Effect of Lipid Mediated Attraction and Antigen Affinity on B-Cell Receptor Microcluster Formation. Biophysical Journal, 2012, 102, 172a.	0.5	Ο
10	Formation of BCR oligomers provides a mechanism for B cell affinity discrimination. Journal of Theoretical Biology, 2012, 307, 174-182.	1.7	10
11	Timing is everything: stochastic origins of cell-to-cell variability in cancer cell death. Frontiers in Bioscience - Landmark, 2011, 16, 307.	3.0	17
12	Monte Carlo Investigation of Diffusion of Receptors and Ligands that Bind Across Opposing Surfaces. Annals of Biomedical Engineering, 2011, 39, 427-442.	2.5	5
13	Nonlinear regulation of commitment to apoptosis by simultaneous inhibition of Bcl-2 and XIAP in leukemia and lymphoma cells. Apoptosis: an International Journal on Programmed Cell Death, 2011, 16, 619-626.	4.9	12
14	Monte Carlo study of B-cell receptor clustering mediated by antigen crosslinking and directed transport. Cellular and Molecular Immunology, 2011, 8, 255-264.	10.5	12
15	Neuroglobin protects nerve cells from apoptosis by inhibiting the intrinsic pathway of cell death. Apoptosis: an International Journal on Programmed Cell Death, 2010, 15, 401-411.	4.9	137
16	Bcl-2 inhibits apoptosis by increasing the time-to-death and intrinsic cell-to-cell variations in the mitochondrial pathway of cell death. Apoptosis: an International Journal on Programmed Cell Death, 2010, 15, 1223-1233.	4.9	77
17	Modeling of B cell Synapse Formation by Monte Carlo Simulation Shows That Directed Transport of Receptor Molecules Is a Potential Formation Mechanism. Cellular and Molecular Bioengineering, 2010, 3, 256-268.	2.1	15
18	A role for human neuroglobin in apoptosis. IUBMB Life, 2010, 62, 878-885.	3.4	50

SUBHADIP RAYCHAUDHURI

#	Article	IF	CITATIONS
19	The Network of Receptors Characterize B Cell Receptor Micro- and Macroclustering in a Monte Carlo Model. Journal of Physical Chemistry B, 2010, 114, 487-494.	2.6	12
20	A Minimal Model of Signaling Network Elucidates Cell-to-Cell Stochastic Variability in Apoptosis. PLoS ONE, 2010, 5, e11930.	2.5	22
21	How can we kill cancer cells: Insights from the computational models of apoptosis. World Journal of Clinical Oncology, 2010, 1, 24.	2.3	8
22	Computational Modeling of Receptor-Ligand Binding and Cellular Signaling Processes. , 2009, , 1-21.		2
23	Monte Carlo Study of Single Molecule Diffusion Can Elucidate the Mechanism of B Cell Synapse Formation. Biophysical Journal, 2008, 95, 1118-1125.	0.5	27
24	Monte Carlo Simulation of Cell Death Signaling Predicts Large Cell-to-Cell Stochastic Fluctuations through the Type 2 Pathway of Apoptosis. Biophysical Journal, 2008, 95, 3559-3562.	0.5	45
25	Mechanisms of B-Cell Synapse Formation Predicted by Monte Carlo Simulation. Biophysical Journal, 2007, 92, 4196-4208.	0.5	44
26	Exciton annihilation on dendrimeric trees. Journal of Luminescence, 2005, 111, 343-347.	3.1	5
27	Directed Migration of Positively Selected Thymocytes Visualized in Real Time. PLoS Biology, 2005, 3, e160.	5.6	149
28	Movies, measurement, and modeling. Journal of Experimental Medicine, 2005, 201, 501-504.	8.5	23
29	Leukocyte Function-associated Antigen 1-mediated Adhesion Stability Is Dynamically Regulated through Affinity and Valency during Bond Formation with Intercellular Adhesion Molecule-1. Journal of Biological Chemistry, 2005, 280, 28290-28298.	3.4	41
30	The Immunological Synapse Balances T Cell Receptor Signaling and Degradation. Science, 2003, 302, 1218-1222.	12.6	496
31	Effective Membrane Model of the Immunological Synapse. Physical Review Letters, 2003, 91, 208101.	7.8	46
32	Disorder and funneling effects on exciton migration in treelike dendrimers. Physical Review E, 2002, 65, 021803.	2.1	14
33	Analysis of pattern formation and phase separation in the immunological synapse. Journal of Chemical Physics, 2002, 117, 9491-9501.	3.0	14
34	Scaling behaviour of randomly alternating surface growth processes. Journal of Physics A, 2002, 35, 10705-10720.	1.6	0
35	Maximal Height Scaling of Kinetically Growing Surfaces. Physical Review Letters, 2001, 87, 136101.	7.8	78
36	Roughness scaling in cyclical surface growth. Physical Review E, 2001, 64, 051604.	2.1	4

#	Article	IF	CITATIONS
37	Excitonic Funneling in Extended Dendrimers with Nonlinear and Random Potentials. Physical Review Letters, 2000, 85, 282-285.	7.8	37
38	Scaling Behavior of Cyclical Surface Growth. Physical Review Letters, 2000, 84, 3029-3032.	7.8	25