List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7120576/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Implementing Feedback Granule Size Control in a Continuous Dry Granulation Line Using Controlled Impeller Speed of the Granulation Unit, Compaction Force and Gap Width. Journal of Pharmaceutical Innovation, 2022, 17, 449-459.	2.4	3
2	Improving Process Understanding in Roll Compaction. Journal of Pharmaceutical Sciences, 2022, 111, 552-558.	3.3	7
3	100% visual inspection of tablets produced with continuous direct compression and coating. International Journal of Pharmaceutics, 2022, 614, 121465.	5.2	4
4	Comparison of two commonly used compression analyses for in-die and out of die performance. , 2022, , .		0
5	Towards a better understanding of the role of stabilizers in QESD crystallizations. Pharmaceutical Research, 2022, 39, 3123-3136.	3.5	5
6	Evaluation of the transferability of an image analysis approach of X-ray micro-computed tomography images for the application with a new validation concept for in silico tools. Journal of Drug Delivery Science and Technology, 2022, 70, 103163.	3.0	2
7	Increasing the Batch Size of a QESD Crystallization by Using a MSMPR Crystallizer. Pharmaceutics, 2022, 14, 1227.	4.5	4
8	Development and Evaluation of an In-line and On-line Monitoring System for Granule Size Distributions in Continuous Roll Compaction/Dry Granulation Based on Laser Diffraction. Journal of Pharmaceutical Innovation, 2021, 16, 247-257.	2.4	7
9	Optimization of residence time distribution in RCDG and an assessment of its applicability in continuous manufacturing. Particuology, 2021, 56, 43-49.	3.6	5
10	The relevance of granule fragmentation on reduced tabletability of granules from ductile or brittle materials produced by roll compaction/dry granulation. International Journal of Pharmaceutics, 2021, 592, 120035.	5.2	17
11	Evaluation of different pre-processing methods of X-ray micro computed tomography images. Powder Technology, 2021, 381, 539-550.	4.2	8
12	Deposition studies on a systematically modified paediatric throat geometry. , 2021, , .		0
13	Transfer of twin-screw granulation process using a shear stress description of screw configuration. , 2021, , .		0
14	Evaluation of Binders in Twin-Screw Wet Granulation. Pharmaceutics, 2021, 13, 241.	4.5	8
15	Improving flowability and reducing storage agglomeration of metformin hydrochloride through QESD crystallization. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 159, 170-176.	4.3	7
16	Enabling the direct compression of metformin hydrochloride through QESD crystallization. International Journal of Pharmaceutics, 2021, 605, 120796.	5.2	9
17	Alternatives to titanium dioxide in tablet coating. Pharmaceutical Development and Technology, 2021, 26, 989-999.	2.4	8
18	Evaluation of different segmentation methods of X-ray micro computed tomography images. International Journal of Pharmaceutics, 2021, 606, 120880.	5.2	5

#	Article	IF	CITATIONS
19	A New Validation Methodology for In Silico Tools Based on X-ray Computed Tomography Images of Tablets and a Performance Analysis of One Tool. Pharmaceutics, 2021, 13, 1488.	4.5	3
20	Predictive selection rule of favourable image processing methods for X-ray micro-computed tomography images of tablets. International Journal of Pharmaceutics, 2021, 610, 121207.	5.2	0
21	Elastic recovery in roll compaction simulation. International Journal of Pharmaceutics, 2020, 573, 118810.	5.2	13
22	Fibrillated Cellulose via High Pressure Homogenization: Analysis and Application for Orodispersible Films. AAPS PharmSciTech, 2020, 21, 33.	3.3	10
23	Mechanistic understanding regarding the functionality of microcrystalline cellulose and powdered cellulose as pelletization aids in wet-extrusion/spheronization. Cellulose, 2020, 27, 2189-2210.	4.9	5
24	Tableting of mini-tablets in comparison with conventionally sized tablets: A comparison of tableting properties and tablet dimensions. International Journal of Pharmaceutics: X, 2020, 2, 100061.	1.6	11
25	Towards better understanding of the influence of process parameters in roll compaction/dry granulation on throughput, ribbon microhardness and granule failure load. International Journal of Pharmaceutics: X, 2020, 2, 100059.	1.6	3
26	A review of regime maps for granulation. International Journal of Pharmaceutics, 2020, 587, 119660.	5.2	18
27	Raman Spectroscopy as a PAT-Tool for Film-Coating Processes: In-Line Predictions Using one PLS Model for Different Cores. Pharmaceutics, 2020, 12, 796.	4.5	4
28	From powder to tablets: Investigation of residence time distributions in a continuous manufacturing process train as basis for continuous process verification. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 153, 200-210.	4.3	15
29	Influence of the surface tension of wet massing liquid on the functionality of microcrystalline cellulose as pelletization aid. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 153, 285-296.	4.3	2
30	Switch of tablet manufacturing from high shear granulation to twin-screw granulation using quality by design approach. International Journal of Pharmaceutics, 2020, 579, 119139.	5.2	15
31	Real-time monitoring of multi-layered film coating processes using Raman spectroscopy. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 153, 43-51.	4.3	6
32	Functionality of disintegrants with different mechanisms after roll compaction. International Journal of Pharmaceutics, 2020, 584, 119434.	5.2	7
33	A comparative study of the influence of alpha-lactose monohydrate particle morphology on granule and tablet properties after roll compaction/dry granulation. Pharmaceutical Development and Technology, 2019, 24, 314-322.	2.4	12
34	Combination of a rotating tube sample divider and dynamic image analysis for continuous on-line determination of granule size distribution. International Journal of Pharmaceutics: X, 2019, 1, 100029.	1.6	6
35	Model-based approach to the design of pharmaceutical roller-compaction processes. International Journal of Pharmaceutics: X, 2019, 1, 100005.	1.6	9
36	Influence of granulation temperature on particle size distribution of granules in twin-screw granulation (TSG). Pharmaceutical Development and Technology, 2019, 24, 874-882.	2.4	12

#	Article	IF	CITATIONS
37	Effect of coating time on inter- and intra-tablet coating uniformity. European Journal of Pharmaceutical Sciences, 2019, 137, 104970.	4.0	12
38	Optimisation of an in-line Raman spectroscopic method for continuous API quantification during twin-screw wet granulation and its application for process characterisation. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 137, 77-85.	4.3	20
39	Potentials and limitations of thermography as an in-line tool for determining ribbon solid fraction. Powder Technology, 2019, 341, 2-10.	4.2	7
40	The influence of isomalt particle morphology on tabletability after roll compaction/dry granulation. Powder Technology, 2019, 341, 59-65.	4.2	6
41	Hybrid modeling of roll compaction processes with the Styl'One Evolution. Powder Technology, 2019, 341, 66-74.	4.2	22
42	Is the adjustment of the impeller speed a reliable attempt to influence granule size in continuous dry granulation?. Advanced Powder Technology, 2018, 29, 1339-1347.	4.1	5
43	Impact of roll compaction design, process parameters, and material deformation behaviour on ribbon relative density. Drug Development and Industrial Pharmacy, 2018, 44, 1295-1306.	2.0	4
44	Impact of functionalized particle structure on roll compaction/dry granulation and tableting of calcium carbonate. International Journal of Pharmaceutics, 2018, 544, 235-241.	5.2	4
45	Development of an in-line Raman spectroscopic method for continuous API quantification during twin-screw wet granulation. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 125, 169-181.	4.3	30
46	Optimization of a semi-batch tablet coating process for a continuous manufacturing line by design of experiments. International Journal of Pharmaceutics, 2018, 539, 95-103.	5.2	8
47	Roll Compaction/Dry Granulation of Dibasic Calcium Phosphate Anhydrous—Does the Morphology of the Raw Material Influence the Tabletability of Dry Granules?. Journal of Pharmaceutical Sciences, 2018, 107, 1104-1111.	3.3	16
48	Methodology for a Variable Rate Control Strategy Development in Continuous Manufacturing Applied to Twin-screw Wet-Granulation and Continuous Fluid-bed Drying. Journal of Pharmaceutical Innovation, 2018, 13, 247-260.	2.4	26
49	Roll Compaction and Tableting of High Loaded Metformin Formulations Using Efficient Binders. AAPS PharmSciTech, 2018, 19, 2068-2076.	3.3	6
50	Evaluation of the performance of different types of roll compactors. Powder Technology, 2018, 337, 84-91.	4.2	5
51	Influence of binder properties on dry granules and tablets. Powder Technology, 2018, 337, 68-77.	4.2	22
52	Infrared thermography — A new approach for in-line density measurement of ribbons produced from roll compaction. Powder Technology, 2018, 337, 17-24.	4.2	21
53	Impact of roll compactor scale on ribbon density. Powder Technology, 2018, 337, 92-103.	4.2	20
54	Orodispersible tablets containing taste-masked solid lipid pellets with metformin hydrochloride: Influence of process parameters on tablet properties. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 122, 137-145.	4.3	31

#	Article	IF	CITATIONS
55	Monitoring of tablet coating processes with colored coatings. Talanta, 2018, 178, 686-697.	5.5	14
56	Xanthan gum as a rate-controlling polymer for the development of alcohol resistant matrix tablets and mini-tablets. International Journal of Pharmaceutics, 2018, 536, 440-449.	5.2	29
57	Towards a better understanding of dry binder functionality. International Journal of Pharmaceutics, 2018, 552, 258-264.	5.2	5
58	Simplified end-to-end continuous manufacturing by feeding API suspensions in twin-screw wet granulation. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 133, 224-231.	4.3	8
59	How relevant is ribbon homogeneity in roll compaction/dry granulation and can it be influenced?. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 133, 232-239.	4.3	9
60	Impact of Different Dry and Wet Granulation Techniques on Granule and Tablet Properties: A Comparative Study. Journal of Pharmaceutical Sciences, 2018, 107, 3143-3152.	3.3	41
61	Laser based thermo-conductometry as an approach to determine ribbon solid fraction off-line and in-line. International Journal of Pharmaceutics, 2018, 547, 330-337.	5.2	2
62	Continuous Single-Step Wet Granulation with Integrated in-Barrel-Drying. Pharmaceutical Research, 2018, 35, 167.	3.5	5
63	Optimization of pellets manufacturing process using rough set theory. European Journal of Pharmaceutical Sciences, 2018, 124, 295-303.	4.0	11
64	MCC–mannitol mixtures after roll compaction/dry granulation: percolation thresholds for ribbon microhardness and granule size distribution. Pharmaceutical Development and Technology, 2017, 22, 764-774.	2.4	7
65	Impact of fill-level in twin-screw granulation on critical quality attributes of granules and tablets. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 115, 102-112.	4.3	61
66	In-line monitoring of multi-layered film-coating on pellets using Raman spectroscopy by MCR and PLS analyses. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 114, 194-201.	4.3	20
67	Influence of drug load on dissolution behavior of tablets containing a poorly water-soluble drug: estimation of the percolation threshold. Drug Development and Industrial Pharmacy, 2017, 43, 1265-1275.	2.0	13
68	Evaluation of in–line Raman data for end-point determination of a coating process: Comparison of Science–Based Calibration, PLS-regression and univariate data analysis. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 119, 28-35.	4.3	31
69	Development of a New Dissolution Test Method for Soft Chewable Dosage Forms. AAPS PharmSciTech, 2017, 18, 2446-2453.	3.3	4
70	Experimental determination of residence time distribution in continuous dry granulation. International Journal of Pharmaceutics, 2017, 524, 91-100.	5.2	21
71	The Density Distribution in Ribbons fromÂRollÂCompaction. Chemie-Ingenieur-Technik, 2017, 89, 1017-1024.	0.8	14
72	Simplified, High Drug‣oaded Formulations Containing Hydrochlorothiazide for Twin‣crew Granulation. Chemie-Ingenieur-Technik, 2017, 89, 1025-1033.	0.8	4

#	Article	IF	CITATIONS
73	Preparation and physicochemical characterization of matrix pellets containing APIs with different solubility via extrusion process. Drug Development and Industrial Pharmacy, 2017, 43, 458-464.	2.0	3
74	Hot Melt Extrusion and Spray Drying of Co-amorphous Indomethacin-Arginine With Polymers. Journal of Pharmaceutical Sciences, 2017, 106, 302-312.	3.3	61
75	How Deformation Behavior Controls Product Performance After Twin Screw Granulation With High Drug Loads and Crospovidone as Disintegrant. Journal of Pharmaceutical Sciences, 2017, 106, 291-301.	3.3	4
76	Effect of roll compaction on granule size distribution of microcrystalline cellulose–mannitol mixtures: computational intelligence modeling and parametric analysis. Drug Design, Development and Therapy, 2017, Volume11, 241-251.	4.3	13
77	The Science and Practice of Extrusion-Spheronization. Advances in Delivery Science and Technology, 2017, , 37-63.	0.4	2
78	A critical review on tablet disintegration. Pharmaceutical Development and Technology, 2016, 21, 1-12.	2.4	64
79	Quantitative Assessment of Mass Flow Boundaries in Continuous Twin-screw Granulation. Chimia, 2016, 70, 604.	0.6	7
80	Effect of roll-compaction and milling conditions on granules and tablet properties. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 106, 38-49.	4.3	38
81	Mini review: Mechanisms to the loss of tabletability by dry granulation. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 106, 9-14.	4.3	85
82	Application of the design of experiments in optimization of drug layering of pellets with an insight into drug polymer interactions. International Journal of Pharmaceutics, 2016, 506, 312-319.	5.2	3
83	Preparation and characterization of spray-dried co-amorphous drug–amino acid salts. Journal of Pharmacy and Pharmacology, 2016, 68, 615-624.	2.4	95
84	Granule size distributions after twin-screw granulation – Do not forget the feeding systems. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 106, 59-69.	4.3	42
85	Evaluation of the tablets' surface flow velocities in pan coaters. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 106, 97-106.	4.3	11
86	Roll compaction/dry granulation: Suitability of different binders. International Journal of Pharmaceutics, 2016, 503, 213-219.	5.2	35
87	Preparation of fenofibrate dry emulsion and dry suspension using octenyl succinic anhydride starch as emulsifying agent and solid carrier. International Journal of Pharmaceutics, 2016, 498, 347-354.	5.2	20
88	Combined application of mixture experimental design and artificial neural networks in the solid dispersion development. Drug Development and Industrial Pharmacy, 2016, 42, 389-402.	2.0	25
89	Critical Evaluation of Root Causes of the Reduced Compactability after Roll Compaction/Dry Granulation. Journal of Pharmaceutical Sciences, 2015, 104, 1108-1118.	3.3	33
90	Modeling of an Active Tablet Coating Process. Journal of Pharmaceutical Sciences, 2015, 104, 4082-4092.	3.3	34

#	Article	IF	CITATIONS
91	From Heuristic to Mathematical Modeling of Drugs Dissolution Profiles: Application of Artificial Neural Networks and Genetic Programming. Computational and Mathematical Methods in Medicine, 2015, 2015, 1-9.	1.3	17
92	Development of orodispersible polymer films containing poorly water soluble active pharmaceutical ingredients with focus on different drug loadings and storage stability. International Journal of Pharmaceutics, 2015, 493, 134-145.	5.2	32
93	Solid-state properties and dissolution behaviour of tablets containing co-amorphous indomethacin–arginine. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 96, 44-52.	4.3	80
94	Impact of fillers on dissolution kinetic of fenofibrate dry foams. Pharmaceutical Development and Technology, 2015, 20, 570-578.	2.4	5
95	Encapsulation of orange terpenes investigating a plasticisation extrusion process. Journal of Microencapsulation, 2015, 32, 408-417.	2.8	22
96	Development of orodispersible polymer films with focus on the solid state characterization of crystalline loperamide. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 94, 52-63.	4.3	28
97	A data mining approach to optimize pellets manufacturing process based on a decision tree algorithm. European Journal of Pharmaceutical Sciences, 2015, 73, 44-48.	4.0	44
98	Determination of coating thickness of minitablets and pellets by dynamic image analysis. International Journal of Pharmaceutics, 2015, 495, 347-353.	5.2	17
99	Simplified formulations with high drug loads for continuous twin-screw granulation. International Journal of Pharmaceutics, 2015, 496, 12-23.	5.2	29
100	Mechanistic study of carvacrol processing and stabilization as glassy solid solution and microcapsule. International Journal of Pharmaceutics, 2015, 478, 597-605.	5.2	11
101	Encapsulation of liquids using a counter rotating twin screw extruder. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 89, 9-17.	4.3	12
102	Performance of tablet disintegrants: impact of storage conditions and relative tablet density. Pharmaceutical Development and Technology, 2015, 20, 762-768.	2.4	28
103	Fast dissolving fillers in dry foam formulation. Powder Technology, 2015, 270, 494-501.	4.2	7
104	Encapsulation of Liquids Via Extrusion - A Review. Current Pharmaceutical Design, 2015, 21, 5815-5828.	1.9	9
105	A New Apparatus for Realâ€Time Assessment of the Particle Size Distribution of Disintegrating Tablets. Journal of Pharmaceutical Sciences, 2014, 103, 3657-3665.	3.3	20
106	Development of a Raman method to follow the evolution of coating thickness of pellets. Drug Development and Industrial Pharmacy, 2014, 40, 1005-1010.	2.0	9
107	Tablet Disintegration Studied by High-Resolution Real-Time Magnetic Resonance Imaging. Journal of Pharmaceutical Sciences, 2014, 103, 249-255.	3.3	67
108	Solid state of processed carbohydrate matrices from maltodextrin and sucrose. Journal of Food Engineering, 2014, 129, 30-37.	5.2	12

#	Article	IF	CITATIONS
109	Influence of storage condition on properties of MCC II-based pellets with theophylline-monohydrate. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88, 483-491.	4.3	8
110	Evaluation of critical process parameters for inter-tablet coating uniformity of active-coated GITS using Terahertz Pulsed Imaging. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88, 434-442.	4.3	21
111	In-line spatial filtering velocimetry for particle size and film thickness determination in fluidized-bed pellet coating processes. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88, 931-938.	4.3	20
112	Evaluation of lubrication methods: How to generate a comparable lubrication for dry granules and powder material for tableting processes. Powder Technology, 2014, 266, 156-166.	4.2	25
113	Assessment of disintegrant efficacy with fractal dimensions from real-time MRI. International Journal of Pharmaceutics, 2014, 475, 605-612.	5.2	20
114	Preparing of pellets by extrusion/spheronization using different types of equipment and process conditions. Drug Development and Industrial Pharmacy, 2014, 40, 762-764.	2.0	5
115	Systematic classification of tablet disintegrants by water uptake and force development kinetics. Journal of Pharmacy and Pharmacology, 2014, 66, 1429-1438.	2.4	29
116	Orange terpenes, carvacrol and α-tocopherol encapsulated in maltodextrin and sucrose matrices via batch mixing. Journal of Food Engineering, 2014, 135, 44-52.	5.2	14
117	Coherent anti-Stokes Raman Scattering (CARS) Microscopy Visualizes Pharmaceutical Tablets During Dissolution. Journal of Visualized Experiments, 2014, , .	0.3	3
118	Influence of process parameters and equipment on dry foam formulation properties using indomethacin as model drug. International Journal of Pharmaceutics, 2013, 455, 189-196.	5.2	20
119	Assessment of test methods evaluating mucoadhesive polymers and dosage forms: An overview. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 85, 843-853.	4.3	101
120	Optimization of the inter-tablet coating uniformity for an active coating process at lab and pilot scale. International Journal of Pharmaceutics, 2013, 457, 1-8.	5.2	29
121	Spheronisation mechanism of MCC II-based pellets. Powder Technology, 2013, 238, 176-187.	4.2	24
122	PAT-tools for process control in pharmaceutical film coating applications. International Journal of Pharmaceutics, 2013, 457, 527-536.	5.2	93
123	Monitoring of an Active Coating Process for Two-Layer Tablets-Model Development Strategies. Journal of Pharmaceutical Sciences, 2013, 102, 556-564.	3.3	11
124	Influence of MCC II fraction and storage conditions on pellet properties. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 85, 1039-1045.	4.3	6
125	Spray models for discrete element simulations of particle coating processes. Chemical Engineering Science, 2013, 101, 603-614.	3.8	57
126	In situ dissolution analysis using coherent anti-Stokes Raman scattering (CARS) and hyperspectral CARS microscopy. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 85, 1141-1147.	4.3	39

#	Article	IF	CITATIONS
127	Experimental Analysis of Tablet Properties for Discrete Element Modeling of an Active Coating Process. AAPS PharmSciTech, 2013, 14, 402-411.	3.3	56
128	Oromucosal film preparations: classification and characterization methods. Expert Opinion on Drug Delivery, 2013, 10, 1303-1317.	5.0	109
129	Evaluation of critical process parameters for intra-tablet coating uniformity using terahertz pulsed imaging. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 85, 1122-1129.	4.3	27
130	Critical Factors in the Measurement of Tablet Film Coatings Using Terahertz Pulsed Imaging. Journal of Pharmaceutical Sciences, 2013, 102, 1813-1824.	3.3	15
131	Solid Lipid Extrusion. AAPS Advances in the Pharmaceutical Sciences Series, 2013, , 299-328.	0.6	4
132	Validation of Terahertz Coating Thickness Measurements Using X-ray Microtomography. Molecular Pharmaceutics, 2012, 9, 3551-3559.	4.6	51
133	Application of artificial neural networks (ANNs) and genetic programming (CP) for prediction of drug release from solid lipid matrices. International Journal of Pharmaceutics, 2012, 436, 877-879.	5.2	11
134	Application of mixtures of polymeric carriers for dissolution enhancement of oxeglitazar using hot-melt extrusion. International Journal of Pharmaceutics, 2012, 439, 145-156.	5.2	40
135	Drug release from extruded solid lipid matrices: Theoretical predictions and independent experiments. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 80, 122-129.	4.3	18
136	Prediction of dissolution time and coating thickness of sustained release formulations using Raman spectroscopy and terahertz pulsed imaging. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 80, 690-697.	4.3	57
137	Roll compaction/dry granulation: Comparison between roll mill and oscillating granulator in dry granulation. Pharmaceutical Development and Technology, 2012, 17, 30-39.	2.4	14
138	Pellet layering: scale-up considerations using different kinds of processing equipment. Drug Development and Industrial Pharmacy, 2012, 38, 1494-1503.	2.0	4
139	Compaction Behavior of Isomalt after Roll Compaction. Pharmaceutics, 2012, 4, 494-500.	4.5	4
140	Application of mixtures of polymeric carriers for dissolution enhancement of fenofibrate using hot-melt extrusion. International Journal of Pharmaceutics, 2012, 429, 58-68.	5.2	67
141	Suitability of a flat die press for the manufacture of pharmaceutical pellets by extrusion/spheronization. Drug Development and Industrial Pharmacy, 2011, 37, 456-464.	2.0	5
142	Increased compactibility of acetames after roll compaction. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 77, 164-169.	4.3	19
143	Solid lipid extrusion with small die diameters – Electrostatic charging, taste masking and continuous production. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 77, 170-177.	4.3	41
144	Melt extruded helical waxy matrices as a new sustained drug delivery system. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 79, 592-600.	4.3	15

#	Article	IF	CITATIONS
145	From Mini to Micro Scale—Feasibility of Raman Spectroscopy as a Process Analytical Tool (PAT). Pharmaceutics, 2011, 3, 723-730.	4.5	10
146	Taste sensing systems (electronic tongues) for pharmaceutical applications. International Journal of Pharmaceutics, 2011, 417, 256-271.	5.2	185
147	Development of mini-tablets with 1mm and 2mm diameter. International Journal of Pharmaceutics, 2011, 416, 164-170.	5.2	77
148	Non-destructive quantification of pharmaceutical tablet coatings using terahertz pulsed imaging and optical coherence tomography. Optics and Lasers in Engineering, 2011, 49, 361-365.	3.8	120
149	Evaluation of Predictive Models for Stable Solid Solution Formation. Journal of Pharmaceutical Sciences, 2011, 100, 667-680.	3.3	19
150	Analysis of matrix dosage forms during dissolution testing using raman microscopy. Journal of Pharmaceutical Sciences, 2011, 100, 4452-4459.	3.3	25
151	Development of a taste-masked generic ibuprofen suspension: Top-down approach guided by electronic tongue measurements. Journal of Pharmaceutical Sciences, 2011, 100, 4460-4470.	3.3	22
152	Pharmaceutical Product Design: Tailored Dissolution of Drugs by Different Extrusion Techniques. Chemie-Ingenieur-Technik, 2011, 83, 589-597.	0.8	8
153	Suitability of κ-carrageenan pellets for the formulation of multiparticulate tablets with modified release. International Journal of Pharmaceutics, 2011, 409, 9-18.	5.2	39
154	Dissolution from solid lipid extrudates containing release modifiers. International Journal of Pharmaceutics, 2011, 412, 77-84.	5.2	16
155	A comparative study on two electronic tongues for pharmaceutical formulation development. Journal of Pharmaceutical and Biomedical Analysis, 2011, 55, 272-281.	2.8	109
156	Influence of needle-shaped drug particles on the solid lipid extrusion process. Powder Technology, 2011, 207, 407-413.	4.2	15
157	Two-Step Solid Lipid Extrusion as a Process to Modify Dissolution Behavior. AAPS PharmSciTech, 2010, 11, 2-8.	3.3	19
158	Improvement of Dissolution Behavior for Poorly Water-Soluble Drug by Application of Cyclodextrin in Extrusion Process: Comparison between Melt Extrusion and Wet Extrusion. AAPS PharmSciTech, 2010, 11, 885-893.	3.3	30
159	Rational development of taste masked oral liquids guided by an electronic tongue. International Journal of Pharmaceutics, 2010, 400, 114-123.	5.2	70
160	Performance qualification of an electronic tongue based on ICH guideline Q2. Journal of Pharmaceutical and Biomedical Analysis, 2010, 51, 497-506.	2.8	87
161	"MCC SANAQ®burstâ€â€"A New Type of Cellulose and its Suitability to Prepare Fast Disintegrating Pellets. Journal of Pharmaceutical Innovation, 2010, 5, 45-57.	2.4	14
162	Analysis of pellet properties with use of artificial neural networks. European Journal of Pharmaceutical Sciences, 2010, 41, 421-429.	4.0	30

#	Article	IF	CITATIONS
163	Investigating dissolution performance critical areas on coated tablets: A case study using terahertz pulsed imaging. Journal of Pharmaceutical Sciences, 2010, 99, 392-402.	3.3	31
164	Investigating the relationship between drug distribution in solid lipid matrices and dissolution behaviour using raman spectroscopy and mapping**Maike Windbergs and Miriam Haaser contributed equally to this work Journal of Pharmaceutical Sciences, 2010, 99, 1464-1475.	3.3	30
165	Validation of Raman spectroscopic procedures in agreement with ICH guideline Q2 with considering the transfer to real time monitoring of an active coating process. Journal of Pharmaceutical and Biomedical Analysis, 2010, 53, 884-894.	2.8	28
166	Compression behaviour of κ-carrageenan pellets. International Journal of Pharmaceutics, 2010, 390, 117-127.	5.2	13
167	Feasibility of Raman spectroscopy as PAT tool in active coating. Drug Development and Industrial Pharmacy, 2010, 36, 234-243.	2.0	59
168	Role of surface free energy and spreading coefficient in the formulation of active agent-layered pellets. European Journal of Pharmaceutics and Biopharmaceutics, 2010, 74, 324-331.	4.3	11
169	Continuous granulation with a twin-screw extruder: Impact of material throughput. Pharmaceutical Development and Technology, 2010, 15, 518-525.	2.4	55
170	Noninvasive 3D characterization of layered samples using terahertz pulsed imaging and infrared optical coherence tomography. , 2009, , .		2
171	Tailor-made dissolution profiles by extruded matrices based on lipid polyethylene glycol mixtures. Journal of Controlled Release, 2009, 137, 211-216.	9.9	26
172	Influence of structural variations on drug release from lipid/polyethylene glycol matrices. European Journal of Pharmaceutical Sciences, 2009, 37, 555-562.	4.0	19
173	Spheronization of Small Extrudates Containing κ-Carrageenan. Journal of Pharmaceutical Sciences, 2009, 98, 3776-3787.	3.3	5
174	Monitoring the Film Coating Unit Operation and Predicting Drug Dissolution Using Terahertz Pulsed Imaging. Journal of Pharmaceutical Sciences, 2009, 98, 4866-4876.	3.3	42
175	Influence of the composition of glycerides on the solid-state behaviour and the dissolution profiles of solid lipid extrudates. International Journal of Pharmaceutics, 2009, 381, 184-191.	5.2	19
176	Spheronization of solid lipid extrudates. Powder Technology, 2009, 189, 238-244.	4.2	17
177	Investigating the Principles of Recrystallization from Glyceride Melts. AAPS PharmSciTech, 2009, 10, 1224-33.	3.3	38
178	Understanding the solid-state behaviour of triglyceride solid lipid extrudates and its influence on dissolution. European Journal of Pharmaceutics and Biopharmaceutics, 2009, 71, 80-87.	4.3	68
179	Terahertz pulsed imaging as an analytical tool for sustained-release tablet film coating. European Journal of Pharmaceutics and Biopharmaceutics, 2009, 71, 117-123.	4.3	64
180	Mechanism of drug release from polymethacrylate-based extrudates and milled strands prepared by hot-melt extrusion. European Journal of Pharmaceutics and Biopharmaceutics, 2009, 71, 387-394.	4.3	92

#	Article	IF	CITATIONS
181	Improved bioavailability of darunavir by use of κ-carrageenan versus microcrystalline cellulose as pelletisation aid. European Journal of Pharmaceutics and Biopharmaceutics, 2009, 72, 614-620.	4.3	23
182	Chemical Imaging of Oral Solid Dosage Forms and Changes upon Dissolution Using Coherent Anti-Stokes Raman Scattering Microscopy. Analytical Chemistry, 2009, 81, 2085-2091.	6.5	89
183	Effect of lubricant on spreading of coating liquid on surface of tablets containing pancreatin. Pharmaceutical Development and Technology, 2009, 00, 090922082619030-6.	2.4	0
184	Impact of screw elements on continuous granulation with a twin-screw extruder. Journal of Pharmaceutical Sciences, 2008, 97, 4934-4942.	3.3	114
185	Evaluation of the composition of the binder bridges in matrix granules prepared with a small-scale high-shear granulator. Journal of Pharmaceutical and Biomedical Analysis, 2008, 48, 694-701.	2.8	6
186	Title is missing!. International Journal of Pharmaceutics, 2008, 347, 173-174.	5.2	7
187	Controlled Release Solid Dosage Forms Using Combinations of (meth)acrylate Copolymers. Pharmaceutical Development and Technology, 2008, 13, 413-423.	2.4	52
188	Solid lipid extrudates as sustained-release matrices: The effect of surface structure on drug release properties. European Journal of Pharmaceutical Sciences, 2008, 35, 335-343.	4.0	31
189	Applications of terahertz pulsed imaging to sustained-release tablet film coating quality assessment and dissolution performance. Journal of Controlled Release, 2008, 127, 79-87.	9.9	81
190	Controlled release of active as a consequence of the die diameter in solid lipid extrusion. Journal of Controlled Release, 2008, 132, 35-41.	9.9	39
191	The Behavior of Different Carrageenans in Pelletization by Extrusion/Spheronization. Pharmaceutical Development and Technology, 2008, 13, 27-35.	2.4	20
192	Studies on the reduction of tensile strength of tablets after roll compaction/dry granulation. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 70, 372-379.	4.3	94
193	Comparison of Different Dry Binders for Roll Compaction/Dry Granulation. Pharmaceutical Development and Technology, 2007, 12, 525-532.	2.4	21
194	Abrasion of tablets during scale-up: The influence of different crushing forces in laboratory and production perforated pan coaters. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 67, 458-463.	4.3	4
195	Solid lipid extrusion of sustained release dosage forms. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 67, 440-448.	4.3	73
196	Chapter 17 Direct pelletization of pharmaceutical pellets in fluid-bed processes. Handbook of Powder Technology, 2007, 11, 779-811.	0.1	6
197	Use of Chitosan-Alginate as Alternative Pelletization Aid to mMicrocrystalline Cellulose in Extrusion/Spheronization. Journal of Pharmaceutical Sciences, 2007, 96, 2469-2484.	3.3	25
198	Roll compaction/dry granulation: Effect of raw material particle size on granule and tablet properties. International Journal of Pharmaceutics, 2007, 338, 110-118.	5.2	140

#	Article	IF	CITATIONS
199	Prediction of tablet velocity in pan coaters for scale-up. Powder Technology, 2007, 173, 51-58.	4.2	30
200	Effect of drying on extruded pellets based on \hat{l}° -carrageenan. European Journal of Pharmaceutical Sciences, 2007, 31, 112-118.	4.0	38
201	Comparison of a laboratory and a production coating spray gun with respect to scale-up. AAPS PharmSciTech, 2007, 8, E21-E31.	3.3	38
202	Influence of chitosan type on the properties of extruded pellets with low amount of microcrystalline cellulose. AAPS PharmSciTech, 2007, 8, E99-E109.	3.3	34
203	Properties of pellets manufactured by wet extrusion/spheronization process using κ-carrageenan: Effect of process parameters. AAPS PharmSciTech, 2007, 8, 101-108.	3.3	25
204	Comparison Study of Laboratory and Production Spray Guns in Film Coating: Effect of Pattern Air and Nozzle Diameter. Pharmaceutical Development and Technology, 2006, 11, 425-433.	2.4	21
205	Use of κ-carrageenan as alternative pelletisation aid to microcrystalline cellulose in extrusion/spheronisation. I. Influence of type and fraction of filler. European Journal of Pharmaceutics and Biopharmaceutics, 2006, 63, 59-67.	4.3	78
206	Use of κ-carrageenan as alternative pelletisation aid to microcrystalline cellulose in extrusion/spheronisation. II. Influence of drug and filler type. European Journal of Pharmaceutics and Biopharmaceutics, 2006, 63, 68-75.	4.3	57
207	Influence of scale-up on the abrasion of tablets in a pan coater. European Journal of Pharmaceutics and Biopharmaceutics, 2006, 64, 388-392.	4.3	9
208	Mathematical modeling of an aqueous film coating process in a Bohle Lab-Coater, Part 1: Development of the model. AAPS PharmSciTech, 2006, 7, E79-E86.	3.3	15
209	Mathematical modeling of an aqueous film coating process in a Bohle Lab-Coater: Part 2: Application of the model. AAPS PharmSciTech, 2006, 7, E87-E94.	3.3	21
210	Cross-linking of amidated low-methoxylated pectin with calcium during extrusion/spheronisation: Effect on particle size and shape. Chemical Engineering Science, 2005, 60, 3899-3907.	3.8	30
211	Studies of the retrogradation process for various starch gels using Raman spectroscopy. Carbohydrate Research, 2005, 340, 2563-2568.	2.3	76
212	Influence of Water on Molecular and Morphological Structure of Various Starches and Starch Derivatives. Starch/Staerke, 2005, 57, 605-615.	2.1	23
213	Coprocessing of Powdered Cellulose and Magnesium Carbonate: Direct Tableting Versus Tableting After Roll Compaction/Dry Granulation. Pharmaceutical Development and Technology, 2005, 10, 353-362.	2.4	13
214	Preliminary assessment of carrageenan as excipient for extrusion/spheronisation. European Journal of Pharmaceutics and Biopharmaceutics, 2005, 59, 127-131.	4.3	75
215	How do roll compaction/dry granulation affect the tableting behaviour of inorganic materials?. European Journal of Pharmaceutical Sciences, 2004, 22, 325-333.	4.0	39
216	Roll compaction/dry granulation: pharmaceutical applications. European Journal of Pharmaceutics and Biopharmaceutics, 2004, 58, 317-326.	4.3	228

#	Article	IF	CITATIONS
217	Properties of microcrystalline cellulose and powder cellulose after extrusion/spheronization as studied by fourier transform Raman spectroscopy and environmental scanning electron microscopy. AAPS PharmSci, 2003, 5, 77-89.	1.3	27
218	How do roll compaction/dry granulation affect the tableting behaviour of inorganic materials? Comparison of four magnesium carbonates. European Journal of Pharmaceutical Sciences, 2003, 19, 281-289.	4.0	66
219	Coating Uniformity: Influence of Atomizing Air Pressure. Pharmaceutical Development and Technology, 2003, 8, 39-46.	2.4	34
220	Coating uniformity and coating efficiency in a Bohle Lab-Coaterusing oval tablets. European Journal of Pharmaceutics and Biopharmaceutics, 2003, 56, 3-9.	4.3	47
221	Disintegrating pellets from a water-insoluble pectin derivative produced by extrusion/spheronisation. European Journal of Pharmaceutics and Biopharmaceutics, 2003, 56, 371-380.	4.3	42
222	Pediatric drug formulations of sodium benzoate:. European Journal of Pharmaceutics and Biopharmaceutics, 2003, 56, 255-260.	4.3	54
223	Pediatric drug formulations of sodium benzoate: I. Coated granules with a hydrophilic binder. European Journal of Pharmaceutics and Biopharmaceutics, 2003, 56, 247-253.	4.3	32
224	Development of Fast-Disintegrating Pellets in a Rotary Processor. Drug Development and Industrial Pharmacy, 2002, 28, 1201-1212.	2.0	17
225	Pectinic acid, a novel excipient for production of pellets by extrusion/spheronisation: preliminary studies. European Journal of Pharmaceutics and Biopharmaceutics, 2002, 54, 95-99.	4.3	52
226	Quantum chemical descriptors in the formulation of pectin pellets produced by extrusion/spheronisation. European Journal of Pharmaceutical Sciences, 2002, 16, 143-149.	4.0	19
227	Variation. Chemical and Pharmaceutical Bulletin, 2001, 49, 140-146.	1.3	8
228	A simple method for evaluating the mixing efficiency of a new type of pan coater. International Journal of Pharmaceutics, 2001, 224, 141-149.	5.2	21
229	Extrusion/spheronization of pectin-based formulations. I. Screening of important factors. AAPS PharmSciTech, 2001, 2, 54-62.	3.3	15
230	Extrusion/spheronization of pectin-based formulations. II. Effect of additive concentration in the granulation liquid. AAPS PharmSciTech, 2001, 2, 63-72.	3.3	11
231	Extrusion/spheronization of pectin-based formulations. I. Screening of important factors. AAPS PharmSciTech, 2001, 2, 54-62.	3.3	10
232	Extrusion/spheronization of pectin-based formulations. II. Effect of additive concentration in the granulation liquid. AAPS PharmSciTech, 2001, 2, 63-72.	3.3	7
233	Influence of degree of polymerization on behavior of cellulose during homogenization and extrusion/spheronization. AAPS PharmSci, 2000, 2, 18-27.	1.3	32
234	Direct Pelletization in a Rotary Processor Controlled by Torque Measurements. I. Influence of Process Variables. Pharmaceutical Development and Technology, 2000, 5, 247-256.	2.4	37

#	ARTICLE	IF	CITATIONS
235	Direct pelletization in a rotary processor controlled by torque measurements. II: Effects of changes in the content of microcrystalline cellulose. AAPS PharmSci, 2000, 2, 45-52.	1.3	32
236	Importance of the Fraction of Microcrystalline Cellulose and Spheronization Speed on the Properties of Extruded Pellets Made from Binary Mixtures*. Pharmaceutical Development and Technology, 1999, 4, 397-404.	2.4	34
237	Influence of the Granulation Step on Pellets Prepared by Extrusion/Spheronization Chemical and Pharmaceutical Bulletin, 1999, 47, 405-412.	1.3	26
238	Comparison between a twin-screw extruder and a rotary ring die press. Part II: influence of process variables. European Journal of Pharmaceutics and Biopharmaceutics, 1998, 45, 173-179.	4.3	30
239	Mixture experiments with the oil phase of parenteral emulsions. European Journal of Pharmaceutics and Biopharmaceutics, 1998, 46, 161-167.	4.3	26
240	Comparison between a twin-screw extruder and a rotary ring die press. I. Influence of formulation variables. European Journal of Pharmaceutics and Biopharmaceutics, 1997, 44, 169-176.	4.3	22
241	Residual Solvents in Biodegradable Microparticles. Influence of Process Parameters on the Residual Solvent in Microparticles Produced by the Aerosol Solvent Extraction System (ASES) Process. Journal of Pharmaceutical Sciences, 1997, 86, 101-105.	3.3	48
242	A new multiparticulate delayed release system Journal of Controlled Release, 1997, 47, 181-189.	9.9	98
243	A new multiparticulate delayed release system Journal of Controlled Release, 1997, 47, 191-199.	9.9	43
244	The crystallite-gel-model for microcrystalline cellulose in wet-granulation, extrusion, and spheronization. , 1997, 14, 804-809.		88
245	Use of a Powerâ€Consumptionâ€Controlled Extruder in the Development of Pellet Formulations. Journal of Pharmaceutical Sciences, 1995, 84, 1259-1264.	3.3	35
246	Structure of disintegrating pellets with regard to fractal geometry. Pharmaceutical Research, 1995, 12, 1694-1700.	3.5	44
247	Shrinking and swelling properties of pellets containing microcrystalline cellulose and low substituted hydroxypropylcellulose: I. Shrinking properties. International Journal of Pharmaceutics, 1994, 109, 209-219.	5.2	85
248	Experiments with an instrumented twin-screw extruder using a single-step granulation/extrusion process. International Journal of Pharmaceutics, 1993, 94, 49-58.	5.2	55