List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7120576/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Roll compaction/dry granulation: pharmaceutical applications. European Journal of Pharmaceutics and Biopharmaceutics, 2004, 58, 317-326.	4.3	228
2	Taste sensing systems (electronic tongues) for pharmaceutical applications. International Journal of Pharmaceutics, 2011, 417, 256-271.	5.2	185
3	Roll compaction/dry granulation: Effect of raw material particle size on granule and tablet properties. International Journal of Pharmaceutics, 2007, 338, 110-118.	5.2	140
4	Non-destructive quantification of pharmaceutical tablet coatings using terahertz pulsed imaging and optical coherence tomography. Optics and Lasers in Engineering, 2011, 49, 361-365.	3.8	120
5	Impact of screw elements on continuous granulation with a twin-screw extruder. Journal of Pharmaceutical Sciences, 2008, 97, 4934-4942.	3.3	114
6	A comparative study on two electronic tongues for pharmaceutical formulation development. Journal of Pharmaceutical and Biomedical Analysis, 2011, 55, 272-281.	2.8	109
7	Oromucosal film preparations: classification and characterization methods. Expert Opinion on Drug Delivery, 2013, 10, 1303-1317.	5.0	109
8	Assessment of test methods evaluating mucoadhesive polymers and dosage forms: An overview. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 85, 843-853.	4.3	101
9	A new multiparticulate delayed release system Journal of Controlled Release, 1997, 47, 181-189.	9.9	98
10	Preparation and characterization of spray-dried co-amorphous drug–amino acid salts. Journal of Pharmacy and Pharmacology, 2016, 68, 615-624.	2.4	95
11	Studies on the reduction of tensile strength of tablets after roll compaction/dry granulation. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 70, 372-379.	4.3	94
12	PAT-tools for process control in pharmaceutical film coating applications. International Journal of Pharmaceutics, 2013, 457, 527-536.	5.2	93
13	Mechanism of drug release from polymethacrylate-based extrudates and milled strands prepared by hot-melt extrusion. European Journal of Pharmaceutics and Biopharmaceutics, 2009, 71, 387-394.	4.3	92
14	Chemical Imaging of Oral Solid Dosage Forms and Changes upon Dissolution Using Coherent Anti-Stokes Raman Scattering Microscopy. Analytical Chemistry, 2009, 81, 2085-2091.	6.5	89
15	The crystallite-gel-model for microcrystalline cellulose in wet-granulation, extrusion, and spheronization. , 1997, 14, 804-809.		88
16	Performance qualification of an electronic tongue based on ICH guideline Q2. Journal of Pharmaceutical and Biomedical Analysis, 2010, 51, 497-506.	2.8	87
17	Shrinking and swelling properties of pellets containing microcrystalline cellulose and low substituted hydroxypropylcellulose: I. Shrinking properties. International Journal of Pharmaceutics, 1994, 109, 209-219.	5.2	85
18	Mini review: Mechanisms to the loss of tabletability by dry granulation. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 106, 9-14.	4.3	85

#	Article	IF	CITATIONS
19	Applications of terahertz pulsed imaging to sustained-release tablet film coating quality assessment and dissolution performance. Journal of Controlled Release, 2008, 127, 79-87.	9.9	81
20	Solid-state properties and dissolution behaviour of tablets containing co-amorphous indomethacin–arginine. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 96, 44-52.	4.3	80
21	Use of κ-carrageenan as alternative pelletisation aid to microcrystalline cellulose in extrusion/spheronisation. I. Influence of type and fraction of filler. European Journal of Pharmaceutics and Biopharmaceutics, 2006, 63, 59-67.	4.3	78
22	Development of mini-tablets with 1mm and 2mm diameter. International Journal of Pharmaceutics, 2011, 416, 164-170.	5.2	77
23	Studies of the retrogradation process for various starch gels using Raman spectroscopy. Carbohydrate Research, 2005, 340, 2563-2568.	2.3	76
24	Preliminary assessment of carrageenan as excipient for extrusion/spheronisation. European Journal of Pharmaceutics and Biopharmaceutics, 2005, 59, 127-131.	4.3	75
25	Solid lipid extrusion of sustained release dosage forms. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 67, 440-448.	4.3	73
26	Rational development of taste masked oral liquids guided by an electronic tongue. International Journal of Pharmaceutics, 2010, 400, 114-123.	5.2	70
27	Understanding the solid-state behaviour of triglyceride solid lipid extrudates and its influence on dissolution. European Journal of Pharmaceutics and Biopharmaceutics, 2009, 71, 80-87.	4.3	68
28	Application of mixtures of polymeric carriers for dissolution enhancement of fenofibrate using hot-melt extrusion. International Journal of Pharmaceutics, 2012, 429, 58-68.	5.2	67
29	Tablet Disintegration Studied by High-Resolution Real-Time Magnetic Resonance Imaging. Journal of Pharmaceutical Sciences, 2014, 103, 249-255.	3.3	67
30	How do roll compaction/dry granulation affect the tableting behaviour of inorganic materials? Comparison of four magnesium carbonates. European Journal of Pharmaceutical Sciences, 2003, 19, 281-289.	4.0	66
31	Terahertz pulsed imaging as an analytical tool for sustained-release tablet film coating. European Journal of Pharmaceutics and Biopharmaceutics, 2009, 71, 117-123.	4.3	64
32	A critical review on tablet disintegration. Pharmaceutical Development and Technology, 2016, 21, 1-12.	2.4	64
33	Impact of fill-level in twin-screw granulation on critical quality attributes of granules and tablets. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 115, 102-112.	4.3	61
34	Hot Melt Extrusion and Spray Drying of Co-amorphous Indomethacin-Arginine With Polymers. Journal of Pharmaceutical Sciences, 2017, 106, 302-312.	3.3	61
35	Feasibility of Raman spectroscopy as PAT tool in active coating. Drug Development and Industrial Pharmacy, 2010, 36, 234-243.	2.0	59
36	Use of κ-carrageenan as alternative pelletisation aid to microcrystalline cellulose in extrusion/spheronisation. II. Influence of drug and filler type. European Journal of Pharmaceutics and Biopharmaceutics, 2006, 63, 68-75.	4.3	57

#	Article	IF	CITATIONS
37	Prediction of dissolution time and coating thickness of sustained release formulations using Raman spectroscopy and terahertz pulsed imaging. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 80, 690-697.	4.3	57
38	Spray models for discrete element simulations of particle coating processes. Chemical Engineering Science, 2013, 101, 603-614.	3.8	57
39	Experimental Analysis of Tablet Properties for Discrete Element Modeling of an Active Coating Process. AAPS PharmSciTech, 2013, 14, 402-411.	3.3	56
40	Experiments with an instrumented twin-screw extruder using a single-step granulation/extrusion process. International Journal of Pharmaceutics, 1993, 94, 49-58.	5.2	55
41	Continuous granulation with a twin-screw extruder: Impact of material throughput. Pharmaceutical Development and Technology, 2010, 15, 518-525.	2.4	55
42	Pediatric drug formulations of sodium benzoate:. European Journal of Pharmaceutics and Biopharmaceutics, 2003, 56, 255-260.	4.3	54
43	Pectinic acid, a novel excipient for production of pellets by extrusion/spheronisation: preliminary studies. European Journal of Pharmaceutics and Biopharmaceutics, 2002, 54, 95-99.	4.3	52
44	Controlled Release Solid Dosage Forms Using Combinations of (meth)acrylate Copolymers. Pharmaceutical Development and Technology, 2008, 13, 413-423.	2.4	52
45	Validation of Terahertz Coating Thickness Measurements Using X-ray Microtomography. Molecular Pharmaceutics, 2012, 9, 3551-3559.	4.6	51
46	Residual Solvents in Biodegradable Microparticles. Influence of Process Parameters on the Residual Solvent in Microparticles Produced by the Aerosol Solvent Extraction System (ASES) Process. Journal of Pharmaceutical Sciences, 1997, 86, 101-105.	3.3	48
47	Coating uniformity and coating efficiency in a Bohle Lab-Coaterusing oval tablets. European Journal of Pharmaceutics and Biopharmaceutics, 2003, 56, 3-9.	4.3	47
48	Structure of disintegrating pellets with regard to fractal geometry. Pharmaceutical Research, 1995, 12, 1694-1700.	3.5	44
49	A data mining approach to optimize pellets manufacturing process based on a decision tree algorithm. European Journal of Pharmaceutical Sciences, 2015, 73, 44-48.	4.0	44
50	A new multiparticulate delayed release system Journal of Controlled Release, 1997, 47, 191-199.	9.9	43
51	Disintegrating pellets from a water-insoluble pectin derivative produced by extrusion/spheronisation. European Journal of Pharmaceutics and Biopharmaceutics, 2003, 56, 371-380.	4.3	42
52	Monitoring the Film Coating Unit Operation and Predicting Drug Dissolution Using Terahertz Pulsed Imaging. Journal of Pharmaceutical Sciences, 2009, 98, 4866-4876.	3.3	42
53	Granule size distributions after twin-screw granulation – Do not forget the feeding systems. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 106, 59-69.	4.3	42
54	Solid lipid extrusion with small die diameters – Electrostatic charging, taste masking and continuous production. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 77, 170-177.	4.3	41

#	Article	IF	CITATIONS
55	Impact of Different Dry and Wet Granulation Techniques on Granule and Tablet Properties: A Comparative Study. Journal of Pharmaceutical Sciences, 2018, 107, 3143-3152.	3.3	41
56	Application of mixtures of polymeric carriers for dissolution enhancement of oxeglitazar using hot-melt extrusion. International Journal of Pharmaceutics, 2012, 439, 145-156.	5.2	40
57	How do roll compaction/dry granulation affect the tableting behaviour of inorganic materials?. European Journal of Pharmaceutical Sciences, 2004, 22, 325-333.	4.0	39
58	Controlled release of active as a consequence of the die diameter in solid lipid extrusion. Journal of Controlled Release, 2008, 132, 35-41.	9.9	39
59	Suitability of κ-carrageenan pellets for the formulation of multiparticulate tablets with modified release. International Journal of Pharmaceutics, 2011, 409, 9-18.	5.2	39
60	In situ dissolution analysis using coherent anti-Stokes Raman scattering (CARS) and hyperspectral CARS microscopy. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 85, 1141-1147.	4.3	39
61	Effect of drying on extruded pellets based on κ-carrageenan. European Journal of Pharmaceutical Sciences, 2007, 31, 112-118.	4.0	38
62	Comparison of a laboratory and a production coating spray gun with respect to scale-up. AAPS PharmSciTech, 2007, 8, E21-E31.	3.3	38
63	Investigating the Principles of Recrystallization from Glyceride Melts. AAPS PharmSciTech, 2009, 10, 1224-33.	3.3	38
64	Effect of roll-compaction and milling conditions on granules and tablet properties. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 106, 38-49.	4.3	38
65	Direct Pelletization in a Rotary Processor Controlled by Torque Measurements. I. Influence of Process Variables. Pharmaceutical Development and Technology, 2000, 5, 247-256.	2.4	37
66	Use of a Powerâ€Consumptionâ€Controlled Extruder in the Development of Pellet Formulations. Journal of Pharmaceutical Sciences, 1995, 84, 1259-1264.	3.3	35
67	Roll compaction/dry granulation: Suitability of different binders. International Journal of Pharmaceutics, 2016, 503, 213-219.	5.2	35
68	Importance of the Fraction of Microcrystalline Cellulose and Spheronization Speed on the Properties of Extruded Pellets Made from Binary Mixtures*. Pharmaceutical Development and Technology, 1999, 4, 397-404.	2.4	34
69	Coating Uniformity: Influence of Atomizing Air Pressure. Pharmaceutical Development and Technology, 2003, 8, 39-46.	2.4	34
70	Influence of chitosan type on the properties of extruded pellets with low amount of microcrystalline cellulose. AAPS PharmSciTech, 2007, 8, E99-E109.	3.3	34
71	Modeling of an Active Tablet Coating Process. Journal of Pharmaceutical Sciences, 2015, 104, 4082-4092.	3.3	34
72	Critical Evaluation of Root Causes of the Reduced Compactability after Roll Compaction/Dry Granulation. Journal of Pharmaceutical Sciences, 2015, 104, 1108-1118.	3.3	33

#	Article	IF	CITATIONS
73	Influence of degree of polymerization on behavior of cellulose during homogenization and extrusion/spheronization. AAPS PharmSci, 2000, 2, 18-27.	1.3	32
74	Direct pelletization in a rotary processor controlled by torque measurements. II: Effects of changes in the content of microcrystalline cellulose. AAPS PharmSci, 2000, 2, 45-52.	1.3	32
75	Pediatric drug formulations of sodium benzoate: I. Coated granules with a hydrophilic binder. European Journal of Pharmaceutics and Biopharmaceutics, 2003, 56, 247-253.	4.3	32
76	Development of orodispersible polymer films containing poorly water soluble active pharmaceutical ingredients with focus on different drug loadings and storage stability. International Journal of Pharmaceutics, 2015, 493, 134-145.	5.2	32
77	Solid lipid extrudates as sustained-release matrices: The effect of surface structure on drug release properties. European Journal of Pharmaceutical Sciences, 2008, 35, 335-343.	4.0	31
78	Investigating dissolution performance critical areas on coated tablets: A case study using terahertz pulsed imaging. Journal of Pharmaceutical Sciences, 2010, 99, 392-402.	3.3	31
79	Evaluation of in–line Raman data for end-point determination of a coating process: Comparison of Science–Based Calibration, PLS-regression and univariate data analysis. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 119, 28-35.	4.3	31
80	Orodispersible tablets containing taste-masked solid lipid pellets with metformin hydrochloride: Influence of process parameters on tablet properties. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 122, 137-145.	4.3	31
81	Comparison between a twin-screw extruder and a rotary ring die press. Part II: influence of process variables. European Journal of Pharmaceutics and Biopharmaceutics, 1998, 45, 173-179.	4.3	30
82	Cross-linking of amidated low-methoxylated pectin with calcium during extrusion/spheronisation: Effect on particle size and shape. Chemical Engineering Science, 2005, 60, 3899-3907.	3.8	30
83	Prediction of tablet velocity in pan coaters for scale-up. Powder Technology, 2007, 173, 51-58.	4.2	30
84	Improvement of Dissolution Behavior for Poorly Water-Soluble Drug by Application of Cyclodextrin in Extrusion Process: Comparison between Melt Extrusion and Wet Extrusion. AAPS PharmSciTech, 2010, 11, 885-893.	3.3	30
85	Analysis of pellet properties with use of artificial neural networks. European Journal of Pharmaceutical Sciences, 2010, 41, 421-429.	4.0	30
86	Investigating the relationship between drug distribution in solid lipid matrices and dissolution behaviour using raman spectroscopy and mapping**Maike Windbergs and Miriam Haaser contributed equally to this work Journal of Pharmaceutical Sciences, 2010, 99, 1464-1475.	3.3	30
87	Development of an in-line Raman spectroscopic method for continuous API quantification during twin-screw wet granulation. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 125, 169-181.	4.3	30
88	Optimization of the inter-tablet coating uniformity for an active coating process at lab and pilot scale. International Journal of Pharmaceutics, 2013, 457, 1-8.	5.2	29
89	Systematic classification of tablet disintegrants by water uptake and force development kinetics. Journal of Pharmacy and Pharmacology, 2014, 66, 1429-1438.	2.4	29
90	Simplified formulations with high drug loads for continuous twin-screw granulation. International Journal of Pharmaceutics, 2015, 496, 12-23.	5.2	29

#	Article	IF	CITATIONS
91	Xanthan gum as a rate-controlling polymer for the development of alcohol resistant matrix tablets and mini-tablets. International Journal of Pharmaceutics, 2018, 536, 440-449.	5.2	29
92	Validation of Raman spectroscopic procedures in agreement with ICH guideline Q2 with considering the transfer to real time monitoring of an active coating process. Journal of Pharmaceutical and Biomedical Analysis, 2010, 53, 884-894.	2.8	28
93	Development of orodispersible polymer films with focus on the solid state characterization of crystalline loperamide. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 94, 52-63.	4.3	28
94	Performance of tablet disintegrants: impact of storage conditions and relative tablet density. Pharmaceutical Development and Technology, 2015, 20, 762-768.	2.4	28
95	Properties of microcrystalline cellulose and powder cellulose after extrusion/spheronization as studied by fourier transform Raman spectroscopy and environmental scanning electron microscopy. AAPS PharmSci, 2003, 5, 77-89.	1.3	27
96	Evaluation of critical process parameters for intra-tablet coating uniformity using terahertz pulsed imaging. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 85, 1122-1129.	4.3	27
97	Mixture experiments with the oil phase of parenteral emulsions. European Journal of Pharmaceutics and Biopharmaceutics, 1998, 46, 161-167.	4.3	26
98	Influence of the Granulation Step on Pellets Prepared by Extrusion/Spheronization Chemical and Pharmaceutical Bulletin, 1999, 47, 405-412.	1.3	26
99	Tailor-made dissolution profiles by extruded matrices based on lipid polyethylene glycol mixtures. Journal of Controlled Release, 2009, 137, 211-216.	9.9	26
100	Methodology for a Variable Rate Control Strategy Development in Continuous Manufacturing Applied to Twin-screw Wet-Granulation and Continuous Fluid-bed Drying. Journal of Pharmaceutical Innovation, 2018, 13, 247-260.	2.4	26
101	Use of Chitosan-Alginate as Alternative Pelletization Aid to mMicrocrystalline Cellulose in Extrusion/Spheronization. Journal of Pharmaceutical Sciences, 2007, 96, 2469-2484.	3.3	25
102	Properties of pellets manufactured by wet extrusion/spheronization process using κ-carrageenan: Effect of process parameters. AAPS PharmSciTech, 2007, 8, 101-108.	3.3	25
103	Analysis of matrix dosage forms during dissolution testing using raman microscopy. Journal of Pharmaceutical Sciences, 2011, 100, 4452-4459.	3.3	25
104	Evaluation of lubrication methods: How to generate a comparable lubrication for dry granules and powder material for tableting processes. Powder Technology, 2014, 266, 156-166.	4.2	25
105	Combined application of mixture experimental design and artificial neural networks in the solid dispersion development. Drug Development and Industrial Pharmacy, 2016, 42, 389-402.	2.0	25
106	Spheronisation mechanism of MCC II-based pellets. Powder Technology, 2013, 238, 176-187.	4.2	24
107	Influence of Water on Molecular and Morphological Structure of Various Starches and Starch Derivatives. Starch/Staerke, 2005, 57, 605-615.	2.1	23
108	Improved bioavailability of darunavir by use of κ-carrageenan versus microcrystalline cellulose as pelletisation aid. European Journal of Pharmaceutics and Biopharmaceutics, 2009, 72, 614-620.	4.3	23

#	Article	IF	CITATIONS
109	Comparison between a twin-screw extruder and a rotary ring die press. I. Influence of formulation variables. European Journal of Pharmaceutics and Biopharmaceutics, 1997, 44, 169-176.	4.3	22
110	Development of a taste-masked generic ibuprofen suspension: Top-down approach guided by electronic tongue measurements. Journal of Pharmaceutical Sciences, 2011, 100, 4460-4470.	3.3	22
111	Encapsulation of orange terpenes investigating a plasticisation extrusion process. Journal of Microencapsulation, 2015, 32, 408-417.	2.8	22
112	Influence of binder properties on dry granules and tablets. Powder Technology, 2018, 337, 68-77.	4.2	22
113	Hybrid modeling of roll compaction processes with the Styl'One Evolution. Powder Technology, 2019, 341, 66-74.	4.2	22
114	A simple method for evaluating the mixing efficiency of a new type of pan coater. International Journal of Pharmaceutics, 2001, 224, 141-149.	5.2	21
115	Comparison Study of Laboratory and Production Spray Guns in Film Coating: Effect of Pattern Air and Nozzle Diameter. Pharmaceutical Development and Technology, 2006, 11, 425-433.	2.4	21
116	Mathematical modeling of an aqueous film coating process in a Bohle Lab-Coater: Part 2: Application of the model. AAPS PharmSciTech, 2006, 7, E87-E94.	3.3	21
117	Comparison of Different Dry Binders for Roll Compaction/Dry Granulation. Pharmaceutical Development and Technology, 2007, 12, 525-532.	2.4	21
118	Evaluation of critical process parameters for inter-tablet coating uniformity of active-coated GITS using Terahertz Pulsed Imaging. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88, 434-442.	4.3	21
119	Experimental determination of residence time distribution in continuous dry granulation. International Journal of Pharmaceutics, 2017, 524, 91-100.	5.2	21
120	Infrared thermography — A new approach for in-line density measurement of ribbons produced from roll compaction. Powder Technology, 2018, 337, 17-24.	4.2	21
121	The Behavior of Different Carrageenans in Pelletization by Extrusion/Spheronization. Pharmaceutical Development and Technology, 2008, 13, 27-35.	2.4	20
122	Influence of process parameters and equipment on dry foam formulation properties using indomethacin as model drug. International Journal of Pharmaceutics, 2013, 455, 189-196.	5.2	20
123	A New Apparatus for Realâ€Time Assessment of the Particle Size Distribution of Disintegrating Tablets. Journal of Pharmaceutical Sciences, 2014, 103, 3657-3665.	3.3	20
124	In-line spatial filtering velocimetry for particle size and film thickness determination in fluidized-bed pellet coating processes. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88, 931-938.	4.3	20
125	Assessment of disintegrant efficacy with fractal dimensions from real-time MRI. International Journal of Pharmaceutics, 2014, 475, 605-612.	5.2	20
126	Preparation of fenofibrate dry emulsion and dry suspension using octenyl succinic anhydride starch as emulsifying agent and solid carrier. International Journal of Pharmaceutics, 2016, 498, 347-354.	5.2	20

#	Article	IF	CITATIONS
127	In-line monitoring of multi-layered film-coating on pellets using Raman spectroscopy by MCR and PLS analyses. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 114, 194-201.	4.3	20
128	Impact of roll compactor scale on ribbon density. Powder Technology, 2018, 337, 92-103.	4.2	20
129	Optimisation of an in-line Raman spectroscopic method for continuous API quantification during twin-screw wet granulation and its application for process characterisation. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 137, 77-85.	4.3	20
130	Quantum chemical descriptors in the formulation of pectin pellets produced by extrusion/spheronisation. European Journal of Pharmaceutical Sciences, 2002, 16, 143-149.	4.0	19
131	Influence of structural variations on drug release from lipid/polyethylene glycol matrices. European Journal of Pharmaceutical Sciences, 2009, 37, 555-562.	4.0	19
132	Influence of the composition of glycerides on the solid-state behaviour and the dissolution profiles of solid lipid extrudates. International Journal of Pharmaceutics, 2009, 381, 184-191.	5.2	19
133	Two-Step Solid Lipid Extrusion as a Process to Modify Dissolution Behavior. AAPS PharmSciTech, 2010, 11, 2-8.	3.3	19
134	Increased compactibility of acetames after roll compaction. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 77, 164-169.	4.3	19
135	Evaluation of Predictive Models for Stable Solid Solution Formation. Journal of Pharmaceutical Sciences, 2011, 100, 667-680.	3.3	19
136	Drug release from extruded solid lipid matrices: Theoretical predictions and independent experiments. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 80, 122-129.	4.3	18
137	A review of regime maps for granulation. International Journal of Pharmaceutics, 2020, 587, 119660.	5.2	18
138	Development of Fast-Disintegrating Pellets in a Rotary Processor. Drug Development and Industrial Pharmacy, 2002, 28, 1201-1212.	2.0	17
139	Spheronization of solid lipid extrudates. Powder Technology, 2009, 189, 238-244.	4.2	17
140	From Heuristic to Mathematical Modeling of Drugs Dissolution Profiles: Application of Artificial Neural Networks and Genetic Programming. Computational and Mathematical Methods in Medicine, 2015, 2015, 1-9.	1.3	17
141	Determination of coating thickness of minitablets and pellets by dynamic image analysis. International Journal of Pharmaceutics, 2015, 495, 347-353.	5.2	17
142	The relevance of granule fragmentation on reduced tabletability of granules from ductile or brittle materials produced by roll compaction/dry granulation. International Journal of Pharmaceutics, 2021, 592, 120035.	5.2	17
143	Dissolution from solid lipid extrudates containing release modifiers. International Journal of Pharmaceutics, 2011, 412, 77-84.	5.2	16
144	Roll Compaction/Dry Granulation of Dibasic Calcium Phosphate Anhydrous—Does the Morphology of the Raw Material Influence the Tabletability of Dry Granules?. Journal of Pharmaceutical Sciences, 2018, 107, 1104-1111.	3.3	16

#	Article	IF	CITATIONS
145	Mathematical modeling of an aqueous film coating process in a Bohle Lab-Coater, Part 1: Development of the model. AAPS PharmSciTech, 2006, 7, E79-E86.	3.3	15
146	Melt extruded helical waxy matrices as a new sustained drug delivery system. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 79, 592-600.	4.3	15
147	Influence of needle-shaped drug particles on the solid lipid extrusion process. Powder Technology, 2011, 207, 407-413.	4.2	15
148	Critical Factors in the Measurement of Tablet Film Coatings Using Terahertz Pulsed Imaging. Journal of Pharmaceutical Sciences, 2013, 102, 1813-1824.	3.3	15
149	From powder to tablets: Investigation of residence time distributions in a continuous manufacturing process train as basis for continuous process verification. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 153, 200-210.	4.3	15
150	Switch of tablet manufacturing from high shear granulation to twin-screw granulation using quality by design approach. International Journal of Pharmaceutics, 2020, 579, 119139.	5.2	15
151	Extrusion/spheronization of pectin-based formulations. I. Screening of important factors. AAPS PharmSciTech, 2001, 2, 54-62.	3.3	15
152	"MCC SANAQ®burstâ€â€"A New Type of Cellulose and its Suitability to Prepare Fast Disintegrating Pellets. Journal of Pharmaceutical Innovation, 2010, 5, 45-57.	2.4	14
153	Roll compaction/dry granulation: Comparison between roll mill and oscillating granulator in dry granulation. Pharmaceutical Development and Technology, 2012, 17, 30-39.	2.4	14
154	Orange terpenes, carvacrol and α-tocopherol encapsulated in maltodextrin and sucrose matrices via batch mixing. Journal of Food Engineering, 2014, 135, 44-52.	5.2	14
155	The Density Distribution in Ribbons fromÂRollÂCompaction. Chemie-Ingenieur-Technik, 2017, 89, 1017-1024.	0.8	14
156	Monitoring of tablet coating processes with colored coatings. Talanta, 2018, 178, 686-697.	5.5	14
157	Coprocessing of Powdered Cellulose and Magnesium Carbonate: Direct Tableting Versus Tableting After Roll Compaction/Dry Granulation. Pharmaceutical Development and Technology, 2005, 10, 353-362.	2.4	13
158	Compression behaviour of κ-carrageenan pellets. International Journal of Pharmaceutics, 2010, 390, 117-127.	5.2	13
159	Influence of drug load on dissolution behavior of tablets containing a poorly water-soluble drug: estimation of the percolation threshold. Drug Development and Industrial Pharmacy, 2017, 43, 1265-1275.	2.0	13
160	Effect of roll compaction on granule size distribution of microcrystalline cellulose–mannitol mixtures: computational intelligence modeling and parametric analysis. Drug Design, Development and Therapy, 2017, Volume11, 241-251.	4.3	13
161	Elastic recovery in roll compaction simulation. International Journal of Pharmaceutics, 2020, 573, 118810.	5.2	13
162	Solid state of processed carbohydrate matrices from maltodextrin and sucrose. Journal of Food Engineering, 2014, 129, 30-37.	5.2	12

#	Article	IF	CITATIONS
163	Encapsulation of liquids using a counter rotating twin screw extruder. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 89, 9-17.	4.3	12
164	A comparative study of the influence of alpha-lactose monohydrate particle morphology on granule and tablet properties after roll compaction/dry granulation. Pharmaceutical Development and Technology, 2019, 24, 314-322.	2.4	12
165	Influence of granulation temperature on particle size distribution of granules in twin-screw granulation (TSG). Pharmaceutical Development and Technology, 2019, 24, 874-882.	2.4	12
166	Effect of coating time on inter- and intra-tablet coating uniformity. European Journal of Pharmaceutical Sciences, 2019, 137, 104970.	4.0	12
167	Role of surface free energy and spreading coefficient in the formulation of active agent-layered pellets. European Journal of Pharmaceutics and Biopharmaceutics, 2010, 74, 324-331.	4.3	11
168	Application of artificial neural networks (ANNs) and genetic programming (GP) for prediction of drug release from solid lipid matrices. International Journal of Pharmaceutics, 2012, 436, 877-879.	5.2	11
169	Monitoring of an Active Coating Process for Two-Layer Tablets-Model Development Strategies. Journal of Pharmaceutical Sciences, 2013, 102, 556-564.	3.3	11
170	Mechanistic study of carvacrol processing and stabilization as glassy solid solution and microcapsule. International Journal of Pharmaceutics, 2015, 478, 597-605.	5.2	11
171	Evaluation of the tablets' surface flow velocities in pan coaters. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 106, 97-106.	4.3	11
172	Optimization of pellets manufacturing process using rough set theory. European Journal of Pharmaceutical Sciences, 2018, 124, 295-303.	4.0	11
173	Tableting of mini-tablets in comparison with conventionally sized tablets: A comparison of tableting properties and tablet dimensions. International Journal of Pharmaceutics: X, 2020, 2, 100061.	1.6	11
174	Extrusion/spheronization of pectin-based formulations. II. Effect of additive concentration in the granulation liquid. AAPS PharmSciTech, 2001, 2, 63-72.	3.3	11
175	From Mini to Micro Scale—Feasibility of Raman Spectroscopy as a Process Analytical Tool (PAT). Pharmaceutics, 2011, 3, 723-730.	4.5	10
176	Fibrillated Cellulose via High Pressure Homogenization: Analysis and Application for Orodispersible Films. AAPS PharmSciTech, 2020, 21, 33.	3.3	10
177	Extrusion/spheronization of pectin-based formulations. I. Screening of important factors. AAPS PharmSciTech, 2001, 2, 54-62.	3.3	10
178	Influence of scale-up on the abrasion of tablets in a pan coater. European Journal of Pharmaceutics and Biopharmaceutics, 2006, 64, 388-392.	4.3	9
179	Development of a Raman method to follow the evolution of coating thickness of pellets. Drug Development and Industrial Pharmacy, 2014, 40, 1005-1010.	2.0	9
180	How relevant is ribbon homogeneity in roll compaction/dry granulation and can it be influenced?. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 133, 232-239.	4.3	9

#	Article	IF	CITATIONS
181	Model-based approach to the design of pharmaceutical roller-compaction processes. International Journal of Pharmaceutics: X, 2019, 1, 100005.	1.6	9
182	Enabling the direct compression of metformin hydrochloride through QESD crystallization. International Journal of Pharmaceutics, 2021, 605, 120796.	5.2	9
183	Encapsulation of Liquids Via Extrusion - A Review. Current Pharmaceutical Design, 2015, 21, 5815-5828.	1.9	9
184	Variation. Chemical and Pharmaceutical Bulletin, 2001, 49, 140-146.	1.3	8
185	Pharmaceutical Product Design: Tailored Dissolution of Drugs by Different Extrusion Techniques. Chemie-Ingenieur-Technik, 2011, 83, 589-597.	0.8	8
186	Influence of storage condition on properties of MCC II-based pellets with theophylline-monohydrate. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88, 483-491.	4.3	8
187	Optimization of a semi-batch tablet coating process for a continuous manufacturing line by design of experiments. International Journal of Pharmaceutics, 2018, 539, 95-103.	5.2	8
188	Simplified end-to-end continuous manufacturing by feeding API suspensions in twin-screw wet granulation. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 133, 224-231.	4.3	8
189	Evaluation of different pre-processing methods of X-ray micro computed tomography images. Powder Technology, 2021, 381, 539-550.	4.2	8
190	Evaluation of Binders in Twin-Screw Wet Granulation. Pharmaceutics, 2021, 13, 241.	4.5	8
191	Alternatives to titanium dioxide in tablet coating. Pharmaceutical Development and Technology, 2021, 26, 989-999.	2.4	8
192	Title is missing!. International Journal of Pharmaceutics, 2008, 347, 173-174.	5.2	7
193	Fast dissolving fillers in dry foam formulation. Powder Technology, 2015, 270, 494-501.	4.2	7
194	Quantitative Assessment of Mass Flow Boundaries in Continuous Twin-screw Granulation. Chimia, 2016, 70, 604.	0.6	7
195	MCC–mannitol mixtures after roll compaction/dry granulation: percolation thresholds for ribbon microhardness and granule size distribution. Pharmaceutical Development and Technology, 2017, 22, 764-774.	2.4	7
196	Potentials and limitations of thermography as an in-line tool for determining ribbon solid fraction. Powder Technology, 2019, 341, 2-10.	4.2	7
197	Development and Evaluation of an In-line and On-line Monitoring System for Granule Size Distributions in Continuous Roll Compaction/Dry Granulation Based on Laser Diffraction. Journal of Pharmaceutical Innovation, 2021, 16, 247-257.	2.4	7
198	Improving flowability and reducing storage agglomeration of metformin hydrochloride through QESD crystallization. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 159, 170-176.	4.3	7

#	Article	IF	CITATIONS
199	Improving Process Understanding in Roll Compaction. Journal of Pharmaceutical Sciences, 2022, 111, 552-558.	3.3	7
200	Functionality of disintegrants with different mechanisms after roll compaction. International Journal of Pharmaceutics, 2020, 584, 119434.	5.2	7
201	Extrusion/spheronization of pectin-based formulations. II. Effect of additive concentration in the granulation liquid. AAPS PharmSciTech, 2001, 2, 63-72.	3.3	7
202	Chapter 17 Direct pelletization of pharmaceutical pellets in fluid-bed processes. Handbook of Powder Technology, 2007, 11, 779-811.	0.1	6
203	Evaluation of the composition of the binder bridges in matrix granules prepared with a small-scale high-shear granulator. Journal of Pharmaceutical and Biomedical Analysis, 2008, 48, 694-701.	2.8	6
204	Influence of MCC II fraction and storage conditions on pellet properties. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 85, 1039-1045.	4.3	6
205	Roll Compaction and Tableting of High Loaded Metformin Formulations Using Efficient Binders. AAPS PharmSciTech, 2018, 19, 2068-2076.	3.3	6
206	Combination of a rotating tube sample divider and dynamic image analysis for continuous on-line determination of granule size distribution. International Journal of Pharmaceutics: X, 2019, 1, 100029.	1.6	6
207	The influence of isomalt particle morphology on tabletability after roll compaction/dry granulation. Powder Technology, 2019, 341, 59-65.	4.2	6
208	Real-time monitoring of multi-layered film coating processes using Raman spectroscopy. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 153, 43-51.	4.3	6
209	Spheronization of Small Extrudates Containing κ-Carrageenan. Journal of Pharmaceutical Sciences, 2009, 98, 3776-3787.	3.3	5
210	Suitability of a flat die press for the manufacture of pharmaceutical pellets by extrusion/spheronization. Drug Development and Industrial Pharmacy, 2011, 37, 456-464.	2.0	5
211	Preparing of pellets by extrusion/spheronization using different types of equipment and process conditions. Drug Development and Industrial Pharmacy, 2014, 40, 762-764.	2.0	5
212	Impact of fillers on dissolution kinetic of fenofibrate dry foams. Pharmaceutical Development and Technology, 2015, 20, 570-578.	2.4	5
213	Is the adjustment of the impeller speed a reliable attempt to influence granule size in continuous dry granulation?. Advanced Powder Technology, 2018, 29, 1339-1347.	4.1	5
214	Evaluation of the performance of different types of roll compactors. Powder Technology, 2018, 337, 84-91.	4.2	5
215	Towards a better understanding of dry binder functionality. International Journal of Pharmaceutics, 2018, 552, 258-264.	5.2	5
216	Continuous Single-Step Wet Granulation with Integrated in-Barrel-Drying. Pharmaceutical Research, 2018, 35, 167.	3.5	5

#	Article	IF	CITATIONS
217	Mechanistic understanding regarding the functionality of microcrystalline cellulose and powdered cellulose as pelletization aids in wet-extrusion/spheronization. Cellulose, 2020, 27, 2189-2210.	4.9	5
218	Optimization of residence time distribution in RCDG and an assessment of its applicability in continuous manufacturing. Particuology, 2021, 56, 43-49.	3.6	5
219	Evaluation of different segmentation methods of X-ray micro computed tomography images. International Journal of Pharmaceutics, 2021, 606, 120880.	5.2	5
220	Towards a better understanding of the role of stabilizers in QESD crystallizations. Pharmaceutical Research, 2022, 39, 3123-3136.	3.5	5
221	Abrasion of tablets during scale-up: The influence of different crushing forces in laboratory and production perforated pan coaters. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 67, 458-463.	4.3	4
222	Pellet layering: scale-up considerations using different kinds of processing equipment. Drug Development and Industrial Pharmacy, 2012, 38, 1494-1503.	2.0	4
223	Compaction Behavior of Isomalt after Roll Compaction. Pharmaceutics, 2012, 4, 494-500.	4.5	4
224	Development of a New Dissolution Test Method for Soft Chewable Dosage Forms. AAPS PharmSciTech, 2017, 18, 2446-2453.	3.3	4
225	Simplified, High Drug‣oaded Formulations Containing Hydrochlorothiazide for Twinâ€Screw Granulation. Chemie-Ingenieur-Technik, 2017, 89, 1025-1033.	0.8	4
226	How Deformation Behavior Controls Product Performance After Twin Screw Granulation With High Drug Loads and Crospovidone as Disintegrant. Journal of Pharmaceutical Sciences, 2017, 106, 291-301.	3.3	4
227	Impact of roll compaction design, process parameters, and material deformation behaviour on ribbon relative density. Drug Development and Industrial Pharmacy, 2018, 44, 1295-1306.	2.0	4
228	Impact of functionalized particle structure on roll compaction/dry granulation and tableting of calcium carbonate. International Journal of Pharmaceutics, 2018, 544, 235-241.	5.2	4
229	Raman Spectroscopy as a PAT-Tool for Film-Coating Processes: In-Line Predictions Using one PLS Model for Different Cores. Pharmaceutics, 2020, 12, 796.	4.5	4
230	Solid Lipid Extrusion. AAPS Advances in the Pharmaceutical Sciences Series, 2013, , 299-328.	0.6	4
231	100% visual inspection of tablets produced with continuous direct compression and coating. International Journal of Pharmaceutics, 2022, 614, 121465.	5.2	4
232	Increasing the Batch Size of a QESD Crystallization by Using a MSMPR Crystallizer. Pharmaceutics, 2022, 14, 1227.	4.5	4
233	Coherent anti-Stokes Raman Scattering (CARS) Microscopy Visualizes Pharmaceutical Tablets During Dissolution. Journal of Visualized Experiments, 2014, , .	0.3	3
234	Application of the design of experiments in optimization of drug layering of pellets with an insight into drug polymer interactions. International Journal of Pharmaceutics, 2016, 506, 312-319.	5.2	3

#	Article	IF	CITATIONS
235	Preparation and physicochemical characterization of matrix pellets containing APIs with different solubility via extrusion process. Drug Development and Industrial Pharmacy, 2017, 43, 458-464.	2.0	3
236	Towards better understanding of the influence of process parameters in roll compaction/dry granulation on throughput, ribbon microhardness and granule failure load. International Journal of Pharmaceutics: X, 2020, 2, 100059.	1.6	3
237	Implementing Feedback Granule Size Control in a Continuous Dry Granulation Line Using Controlled Impeller Speed of the Granulation Unit, Compaction Force and Gap Width. Journal of Pharmaceutical Innovation, 2022, 17, 449-459.	2.4	3
238	A New Validation Methodology for In Silico Tools Based on X-ray Computed Tomography Images of Tablets and a Performance Analysis of One Tool. Pharmaceutics, 2021, 13, 1488.	4.5	3
239	Noninvasive 3D characterization of layered samples using terahertz pulsed imaging and infrared optical coherence tomography. , 2009, , .		2
240	Laser based thermo-conductometry as an approach to determine ribbon solid fraction off-line and in-line. International Journal of Pharmaceutics, 2018, 547, 330-337.	5.2	2
241	Influence of the surface tension of wet massing liquid on the functionality of microcrystalline cellulose as pelletization aid. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 153, 285-296.	4.3	2
242	The Science and Practice of Extrusion-Spheronization. Advances in Delivery Science and Technology, 2017, , 37-63.	0.4	2
243	Evaluation of the transferability of an image analysis approach of X-ray micro-computed tomography images for the application with a new validation concept for in silico tools. Journal of Drug Delivery Science and Technology, 2022, 70, 103163.	3.0	2
244	Deposition studies on a systematically modified paediatric throat geometry. , 2021, , .		0
245	Transfer of twin-screw granulation process using a shear stress description of screw configuration. , 2021, , .		0
246	Effect of lubricant on spreading of coating liquid on surface of tablets containing pancreatin. Pharmaceutical Development and Technology, 2009, 00, 090922082619030-6.	2.4	0
247	Predictive selection rule of favourable image processing methods for X-ray micro-computed tomography images of tablets. International Journal of Pharmaceutics, 2021, 610, 121207.	5.2	0
248	Comparison of two commonly used compression analyses for in-die and out of die performance. , 2022, , .		0