
Achim Loske

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7120546/publications.pdf Version: 2024-02-01

ACHIM LOSKE

#	Article	IF	CITATIONS
1	The influence of the number of shock waves and the energy flux density on the Raman spectrum of collagen type I from rat. Shock Waves, 2020, 30, 201-214.	1.0	5
2	Shock wave-assisted extraction of phenolic acids and flavonoids from Eysenhardtia polystachya heartwood: A novel method and its comparison with conventional methodologies. Ultrasonics Sonochemistry, 2020, 61, 104809.	3.8	19
3	Shock Wave Application Increases the Antineoplastic Effect of Molecular Iodine Supplement in Breast Cancer Xenografts. Ultrasound in Medicine and Biology, 2020, 46, 649-659.	0.7	4
4	Enhancing the yield of human erythropoietin in Aspergillus niger by introns and CRISPR-Cas9. Protein Expression and Purification, 2020, 168, 105570.	0.6	13
5	Kriging model to study the dynamics of a bubble subjected to tandem shock waves as used in biomedical applications. Ultrasonics, 2019, 91, 10-18.	2.1	5
6	Enhanced Delignification of Lignocellulosic Biomass by Recombinant Fungus <i>Phanerochaete chrysosporium</i> Overexpressing Laccases and Peroxidases. Journal of Molecular Microbiology and Biotechnology, 2018, 28, 1-13.	1.0	20
7	pMEX01, a 70 kb plasmid isolated from Escherichia coli that confers resistance to multiple β-lactam antibiotics. Brazilian Journal of Microbiology, 2018, 49, 569-574.	0.8	2
8	Shock wave-induced permeabilization of mammalian cells. Physics of Life Reviews, 2018, 26-27, 1-38.	1.5	24
9	Extracellular Expression in Aspergillus niger of an Antibody Fused to Leishmania sp. Antigens. Current Microbiology, 2018, 75, 40-48.	1.0	14
10	Shock waves: A non-shocking way for targeted therapies?. Physics of Life Reviews, 2018, 26-27, 53-56.	1.5	0
11	Dynamic light scattering: A fast and reliable method to analyze bacterial growth during the lag phase. Journal of Microbiological Methods, 2017, 137, 34-39.	0.7	21
12	Medical and Biomedical Applications of Shock Waves. Shock Wave and High Pressure Phenomena, 2017, , .	0.1	27
13	Brief Historical Background. Shock Wave and High Pressure Phenomena, 2017, , 5-18.	0.1	0
14	Novel Uses and Potential Applications. Shock Wave and High Pressure Phenomena, 2017, , 251-301.	0.1	1
15	Medical and Biomedical Applications of Shock Waves: The State of the Art and the Near Future. , 2017, , 29-34.		2
16	Shock Wave-Induced Damage and Poration in Eukaryotic Cell Membranes. Journal of Membrane Biology, 2017, 250, 41-52.	1.0	18
17	Shock Waves as Used in Biomedical Applications. Shock Wave and High Pressure Phenomena, 2017, , 19-42.	0.1	3
18	Shock Wave Interaction with Matter. Shock Wave and High Pressure Phenomena, 2017, , 43-82.	0.1	1

Аснім Loske

#	Article	IF	CITATIONS
19	Shock Wave Lithotripsy. Shock Wave and High Pressure Phenomena, 2017, , 83-187.	0.1	1
20	Biomimetic coat enables the use of sonoporation to assist delivery of silica nanoparticle-cargoes into human cells. Biointerphases, 2016, 11, 04B303.	0.6	4
21	Tandem shock waves in medicine and biology: a review of potential applications and successes. Shock Waves, 2016, 26, 1-23.	1.0	37
22	Combined short and long-delay tandem shock waves to improve shock wave lithotripsy according to the Gilmore–Akulichev theory. Ultrasonics, 2015, 58, 53-59.	2.1	12
23	Recombinant expression of four oxidoreductases in Phanerochaete chrysosporium improves degradation of phenolic and non-phenolic substrates. Journal of Biotechnology, 2015, 209, 76-84.	1.9	41
24	Isolation of a conjugative F-like plasmid from a multidrug-resistant Escherichia coli strain CM6 using tandem shock wave-mediated transformation. Journal of Microbiological Methods, 2015, 114, 1-8.	0.7	4
25	Transformation of Fungi Using Shock Waves. Fungal Biology, 2015, , 209-219.	0.3	3
26	Efficient transformation of Mycosphaerella fijiensis by underwater shock waves. Journal of Microbiological Methods, 2015, 119, 98-105.	0.7	8
27	DNA Integrity and Shock Wave Transformation Efficiency of Bacteria and Fungi. , 2015, , 873-875.		0
28	Physical methods for genetic transformation of fungi and yeast. Physics of Life Reviews, 2014, 11, 184-203.	1.5	50
29	High-yield production of manganese peroxidase, lignin peroxidase, and versatile peroxidase in Phanerochaete chrysosporium. Applied Microbiology and Biotechnology, 2014, 98, 9283-9294.	1.7	56
30	Escherichia coli viability determination using dynamic light scattering: a comparison with standard methods. Archives of Microbiology, 2014, 196, 557-563.	1.0	21
31	Tandem shock waves to enhance genetic transformation of Aspergillus niger. Ultrasonics, 2014, 54, 1656-1662.	2.1	17
32	When the boundaries between physics and biology blur: A promising future for fungi as producers of valuable recombinant proteins. Physics of Life Reviews, 2014, 11, 217-219.	1.5	0
33	Shock Waves and DNA-Cationic Lipid Assemblies: A Synergistic Approach to Express Exogenous Genes in Human Cells. Ultrasound in Medicine and Biology, 2014, 40, 1599-1608.	0.7	11
34	Out-of-Focus Low Pressure Pulse Pretreatment to the Whole Kidney to Reduce Renal Injury During Shockwave Lithotripsy: An In Vivo Study Using a Rabbit Model. Journal of Endourology, 2013, 27, 774-782.	1.1	4
35	A novel and highly efficient method for genetic transformation of fungi employing shock waves. Fungal Genetics and Biology, 2013, 56, 9-16.	0.9	55
36	Bio-Packaged Transponder MEMS Implanted in Rats. Journal of Biomaterials Science, Polymer Edition, 2013, 24, 31-44.	1.9	0

Аснім Loske

#	Article	IF	CITATIONS
37	Physical methods for genetic plant transformation. Physics of Life Reviews, 2012, 9, 308-345.	1.5	93
38	Relationship Between Plasmid Size and Shock Wave-Mediated Bacterial Transformation. Ultrasound in Medicine and Biology, 2012, 38, 1078-1084.	0.7	14
39	Physical methods for genetic transformation in plants. Physics of Life Reviews, 2012, 9, 352.	1.5	2
40	In Vivo Evaluation of Implant–Host Tissue Interaction using Morphology-Controlled Hydroxyapatite-Based Biomaterials. Journal of Biomaterials Science, Polymer Edition, 2011, 22, 1799-1810.	1.9	8
41	Modified shock waves for extracorporeal shock wave lithotripsy: A simulation based on the Gilmore formulation. Ultrasonics, 2011, 51, 803-810.	2.1	20
42	Enhanced Shock Wave-Assisted Transformation of Escherichia coli. Ultrasound in Medicine and Biology, 2011, 37, 502-510.	0.7	36
43	The role of energy density and acoustic cavitation in shock wave lithotripsy. Ultrasonics, 2010, 50, 300-305.	2.1	30
44	Percutaneous Renal Access: The Learning Curve of a Simplified Approach. Journal of Endourology, 2010, 24, 457-460.	1.1	17
45	What Are Shock Waves?. , 2010, , 253-262.		2
46	Interaction of Intracorporeal Lithotripters with Proteus mirabilis Inoculated Inside Artificial Calcium and Struvite Stones. Journal of Endourology, 2009, 23, 519-522.	1.1	10
47	The Importance of an Expansion Chamber During Standard and Tandem Extracorporeal Shock Wave Lithotripsy. Journal of Endourology, 2009, 23, 693-697.	1.1	11
48	Treatment Time Reduction Using Tandem Shockwaves for Lithotripsy: An <i>In Vivo</i> Study. Journal of Endourology, 2009, 23, 1247-1253.	1.1	28
49	The influence of single-pulse and tandem shock waves on bacteria. Shock Waves, 2008, 17, 441-447.	1.0	21
50	Inactivation of bacteria inoculated inside urinary stone-phantoms using intracorporeal lithotripters. Urological Research, 2008, 36, 67-72.	1.5	15
51	Interaction of Shockwaves with Infected Kidney Stones: Is There a Bactericidal Effect?. Journal of Endourology, 2008, 22, 1629-1638.	1.1	13
52	In-Vivo Relation between CT Attenuation Value and Shockwave Fragmentation. Journal of Endourology, 2007, 21, 343-346.	1.1	13
53	Percutaneous Renal Access: A Simplified Approach. Journal of Endourology, 2007, 21, 1271-1276.	1.1	21
54	Bacteria Inactivation During Lithotripsy. AIP Conference Proceedings, 2006, , .	0.3	0

Аснім Loske

#	Article	IF	CITATIONS
55	Computed tomography of kidney stones for extracorporeal shock wave lithotripsy. , 2006, 2006, 2774-5.		2
56	CT Attenuation Value and Shockwave Fragmentation. Journal of Endourology, 2005, 19, 5-10.	1.1	15
57	DUAL PULSE SHOCK WAVE LITHOTRIPSY: IN VITRO AND IN VIVO STUDY. Journal of Urology, 2005, 174, 2388-2392.	0.2	24
58	Evaluation of a Bifocal Reflector on a Clinical Lithotripter. Journal of Endourology, 2004, 18, 7-16.	1.1	23
59	Inactivation of Escherichia coli O157:H7, Salmonella Typhimurium and Listeria monocytogenes by underwater shock waves. Innovative Food Science and Emerging Technologies, 2004, 5, 459-463.	2.7	29
60	Electronic device to improve the efficiency of extracorporeal lithotripters. Journal of Applied Research and Technology, 2004, 2, .	0.6	2
61	Conversion of an HM3 Lithotripter into a Research Device. Journal of Endourology, 2003, 17, 709-717.	1.1	4
62	Tandem shock wave cavitation enhancement for extracorporeal lithotripsy. Physics in Medicine and Biology, 2002, 47, 3945-3957.	1.6	56
63	Pressure-Release versus Rigid Reflector for Extracorporeal Shockwave Lithotripsy. Journal of Endourology, 2002, 16, 273-280.	1.1	5
64	Bactericidal effect of underwater shock waves on Escherichia coli ATCC 10536 suspensions. Innovative Food Science and Emerging Technologies, 2002, 3, 321-327.	2.7	42
65	Applications of Shock Waves in Medicine. , 2001, , 415-440.		5
66	More efficient focusing for extracorporeal shock wave lithotripsy. AIP Conference Proceedings, 2001,	0.3	0
67	Bifocal Reflector for Electrohydraulic Lithotripters. Journal of Endourology, 1999, 13, 65-75.	1.1	27
68	Study of pressure transducers and electrodes for underwater shock wave generators. AIP Conference Proceedings, 1994, , .	0.3	1
69	Structural studies of a gallosilicate of the ZSM-5 type zeolite using high resolution electron microscopy, optical diffractometry and linear image processing. Microporous Materials, 1993, 1, 309-312.	1.6	2
70	UNDERWATER SHOCK WAVES IN MEDICAL APPLICATIONS. , 1992, , 843-846.		1
71	An underwater shock wave research device. Review of Scientific Instruments, 1991, 62, 1849-1854.	0.6	24
72	A lensâ€free optical imageâ€processing device. American Journal of Physics, 1988, 56, 475-477.	0.3	1