
Sergio A Estay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/712030/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Socioeconomic and environmental contexts of suicidal rates in a latitudinal gradient: Understanding interactions to inform public health interventions. Journal of Psychiatric Research, 2022, 148, 45-51.	3.1	2
2	Spatial and temporal shift in the factors affecting the population dynamics of Calanus copepods in the North Sea. Global Change Biology, 2021, 27, 576-586.	9.5	9
3	Snow Cover and Snow Persistence Changes in the Mocho-Choshuenco Volcano (Southern Chile) Derived From 35 Years of Landsat Satellite Images. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	3
4	The Importance of Intraspecific Variation for Niche Differentiation and Species Distribution Models: The Ecologically Diverse Frog Pleurodema thaul as Study Case. Evolutionary Biology, 2020, 47, 206-219.	1.1	6
5	Extinction risk assessment of a Patagonian ungulate using population dynamics models under climate change scenarios. International Journal of Biometeorology, 2020, 64, 1847-1855.	3.0	1
6	Ecology of the collapse of Rapa Nui society. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200662.	2.6	31
7	Spatio-temporal assessment of beech growth in relation to climate extremes in Slovenia – An integrated approach using remote sensing and tree-ring data. Agricultural and Forest Meteorology, 2020, 287, 107925.	4.8	61
8	Ormiscodes amphimone Outbreak Frequency Increased Since 2000 in Subantarctic Nothofagus pumilio Forests of Chilean Patagonia. , 2020, , 61-75.		2
9	Insect Pests Affecting Exotic Trees in Chile and Their Management. , 2020, , 185-195.		4
10	The amphibianâ€killing fungus in a biodiversity hotspot: identifying and validating highâ€risk areas and refugia. Ecosphere, 2019, 10, e02724.	2.2	12
11	Quantifying massive outbreaks of the defoliator moth <i>Ormiscodes amphimone</i> in deciduous <i>Nothofagusâ€</i> dominated southern forests using remote sensing time series analysis. Journal of Applied Entomology, 2019, 143, 787-796.	1.8	19
12	A Self-Calibrated Non-Parametric Time Series Analysis Approach for Assessing Insect Defoliation of Broad-Leaved Deciduous Nothofagus pumilio Forests. Remote Sensing, 2019, 11, 204.	4.0	24
13	Widespread infection of <i>Areospora rohanae</i> in southern king crab (<i>Lithodes santolla</i>) populations across south Chilean Patagonia. Royal Society Open Science, 2019, 6, 190682.	2.4	1
14	Integrating species and interactions into similarity metrics: a graph theory-based approach to understanding community similarity. PeerJ, 2019, 7, e7013.	2.0	4
15	The relative role of ecological interactions and environmental variables on the population dynamics of marine benthic polychaetes. Marine Biodiversity, 2018, 48, 1203-1212.	1.0	4
16	Food webs over time: evaluating structural differences and variability of degree distributions in food webs. Ecosphere, 2018, 9, e02539.	2.2	4
17	Sex bias in ability to cope with cancer: Tasmanian devils and facial tumour disease. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20182239.	2.6	31
18	Protected areas' effectiveness under climate change: a latitudinal distribution projection of an endangered mountain ungulate along the Andes Range. PeerJ, 2018, 6, e5222.	2.0	18

SERGIO A ESTAY

#	Article	IF	CITATIONS
19	High temporal variability in the occurrence of consumer–resource interactions in ecological networks. Oikos, 2017, 126, 1699-1707.	2.7	17
20	Size matters: point pattern analysis biases the estimation of spatial properties of stomata distribution. New Phytologist, 2017, 213, 1956-1960.	7.3	6
21	Ectotherms in Variable Thermal Landscapes: A Physiological Evaluation of the Invasive Potential of Fruit Flies Species. Frontiers in Physiology, 2016, 7, 302.	2.8	11
22	Correspondence between the habitat of the threatened pudú (Cervidae) and the national protected-area system of Chile. BMC Ecology, 2016, 16, 1.	3.0	58
23	Invasive Insects in the Mediterranean Forests of Chile. , 2016, , 379-396.		4
24	Whooping cough dynamics in Chile (1932–2010): disease temporal fluctuations across a north-south gradient. BMC Infectious Diseases, 2015, 15, 590.	2.9	7
25	Bird Richness and Abundance in Response to Urban Form in a Latin American City: Valdivia, Chile as a Case Study. PLoS ONE, 2015, 10, e0138120.	2.5	70
26	Combining environmental suitability and population abundances to evaluate the invasive potential of the tunicate <i>Ciona intestinalis</i> along the temperate South American coast. PeerJ, 2015, 3, e1357.	2.0	13
27	Impact of global warming at the range margins: phenotypic plasticity and behavioral thermoregulation will buffer an endemic amphibian. Ecology and Evolution, 2014, 4, 4467-4475.	1.9	34
28	The role of temperature variability on insect performance and population dynamics in a warming world. Oikos, 2014, 123, 131-140.	2.7	121
29	Differential responses to thermal variation between fitness metrics. Scientific Reports, 2014, 4, 5349.	3.3	21
30	Evaluating Habitat Suitability for the Establishment of Monochamus spp. through Climate-Based Niche Modeling. PLoS ONE, 2014, 9, e102592.	2.5	18
31	Warming effects in the western Antarctic Peninsula ecosystem: the role of population dynamic models for explaining and predicting penguin trends. Population Ecology, 2013, 55, 557-565.	1.2	14
32	Effects of human mediated disturbances on exotic forest insect diversity in a Chilean mediterranean ecosystem. Biodiversity and Conservation, 2012, 21, 3699-3710.	2.6	7
33	Late Quaternary hydrological and ecological changes in the hyperarid core of the northern Atacama Desert (~21°S). Earth-Science Reviews, 2012, 113, 120-140.	9.1	127
34	Increased outbreak frequency associated with changes in the dynamic behaviour of populations of two aphid species. Oikos, 2012, 121, 614-622.	2.7	12
35	Data analysis in forest sciences: why do we continue using null hypothesis significance tests?. Bosque, 2011, 32, 3-9.	0.3	0
36	A Simultaneous Test of Synchrony Causal Factors in Muskrat and Mink Fur Returns at Different Scales across Canada. PLoS ONE, 2011, 6, e27766.	2.5	7

SERGIO A ESTAY

#	Article	IF	CITATIONS
37	The Mean and Variance of Environmental Temperature Interact to Determine Physiological Tolerance and Fitness. Physiological and Biochemical Zoology, 2011, 84, 543-552.	1.5	200
38	Beyond average: an experimental test of temperature variability on the population dynamics of <i>Tribolium confusum</i> . Population Ecology, 2011, 53, 53-58.	1.2	59
39	Combined effect of ENSO and SAM on the population dynamics of the invasive yellowjacket wasp in central Chile. Population Ecology, 2010, 52, 289-294.	1.2	27
40	Climate mediated exogenous forcing and synchrony in populations of the oak aphid in the UK. Oikos, 2009, 118, 175-182.	2.7	16
41	Predicting insect pest status under climate change scenarios: combining experimental data and population dynamics modelling. Journal of Applied Entomology, 2009, 133, 491-499.	1.8	102
42	Nonâ€linear feedback processes and a latitudinal gradient in the climatic effects determine green spruce aphid outbreaks in the UK. Oikos, 2008, 117, 951-959.	2.7	32
43	Northern Atlantic Oscillation effects on the temporal and spatial dynamics of green spruce aphid populations in the UK. Journal of Animal Ecology, 2007, 76, 782-789.	2.8	19
44	The importance of spatio-temporal dynamics on MPA's design. Peer Community in Ecology, 0, , 100048.	0.0	0
45	A modeling approach to estimate the historical population size of the Patagonian Kawésqar people. Holocene, 0, , 095968362210807.	1.7	0