
Vânia Calisto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7120090/publications.pdf Version: 2024-02-01

<u>ΝÃΦΝΙΑ CALISTO</u>

#	Article	IF	CITATIONS
1	Salinity-dependent impacts on the effects of antiepileptic and antihistaminic drugs in Ruditapes philippinarum. Science of the Total Environment, 2022, 806, 150369.	3.9	7
2	Responses of Ruditapes philippinarum to contamination by pharmaceutical drugs under ocean acidification scenario. Science of the Total Environment, 2022, 824, 153591.	3.9	8
3	Overview of relevant economic and environmental aspects of waste-based activated carbons aimed at adsorptive water treatments. Journal of Cleaner Production, 2022, 344, 130984.	4.6	25
4	Multivariable optimization of activated carbon production from microwave pyrolysis of brewery wastes - Application in the removal of antibiotics from water. Journal of Hazardous Materials, 2022, 431, 128556.	6.5	18
5	The role of nanoplastics on the toxicity of the herbicide phenmedipham, using Danio rerio embryos as model organisms. Environmental Pollution, 2022, 303, 119166.	3.7	12
6	Sulfadiazine's photodegradation using a novel magnetic and reusable carbon based photocatalyst: Photocatalytic efficiency and toxic impacts to marine bivalves. Journal of Environmental Management, 2022, 313, 115030.	3.8	10
7	Assessment of diphenhydramine toxicity – Is its mode of action conserved between human and zebrafish?. Environment International, 2022, 164, 107263.	4.8	9
8	In situ functionalization of a cellulosic-based activated carbon with magnetic iron oxides for the removal of carbamazepine from wastewater. Environmental Science and Pollution Research, 2021, 28, 18314-18327.	2.7	23
9	Optimizing microwave-assisted production of waste-based activated carbons for the removal of antibiotics from water. Science of the Total Environment, 2021, 752, 141662.	3.9	26
10	Effects of thiol functionalization of a waste-derived activated carbon on the adsorption of sulfamethoxazole from water: Kinetic, equilibrium and thermodynamic studies. Journal of Molecular Liquids, 2021, 323, 115003.	2.3	20
11	Can ocean warming alter sub-lethal effects of antiepileptic and antihistaminic pharmaceuticals in marine bivalves?. Aquatic Toxicology, 2021, 230, 105673.	1.9	23
12	Biochar-TiO2 magnetic nanocomposites for photocatalytic solar-driven removal of antibiotics from aquaculture effluents. Journal of Environmental Management, 2021, 294, 112937.	3.8	37
13	Sustainable and recoverable waste-based magnetic nanocomposites used for the removal of pharmaceuticals from wastewater. Chemical Engineering Journal, 2021, 426, 129974.	6.6	11
14	Producing Magnetic Nanocomposites from Paper Sludge for the Adsorptive Removal of Pharmaceuticals from Water—A Fractional Factorial Design. Nanomaterials, 2021, 11, 287.	1.9	13
15	Effect of the surface functionalization of a waste-derived activated carbon on pharmaceuticals' adsorption from water. Journal of Molecular Liquids, 2020, 299, 112098.	2.3	28
16	Upcycling spent brewery grains through the production of carbon adsorbents—application to the removal of carbamazepine from water. Environmental Science and Pollution Research, 2020, 27, 36463-36475.	2.7	14
17	Coreâ^'Shell Molecularly Imprinted Polymers on Magnetic Yeast for the Removal of Sulfamethoxazole from Water. Polymers, 2020, 12, 1385.	2.0	22
18	Recent advances on the development and application of magnetic activated carbon and char for the removal of pharmaceutical compounds from waters: A review. Science of the Total Environment, 2020, 718, 137272.	3.9	99

VâNIA CALISTO

#	Article	IF	CITATIONS
19	Monitoring pharmaceuticals in the aquatic environment using enzyme-linked immunosorbent assay (ELISA)—a practical overview. Analytical and Bioanalytical Chemistry, 2020, 412, 3983-4008.	1.9	28
20	Photodegradation of sulfamethoxazole in environmental samples: The role of pH, organic matter and salinity. Science of the Total Environment, 2019, 648, 1403-1410.	3.9	60
21	Fixed-bed performance of a waste-derived granular activated carbon for the removal of micropollutants from municipal wastewater. Science of the Total Environment, 2019, 683, 699-708.	3.9	22
22	Adsorption of pharmaceuticals from biologically treated municipal wastewater using paper mill sludge-based activated carbon. Environmental Science and Pollution Research, 2019, 26, 13173-13184.	2.7	43
23	Computational optimization of bioadsorbents for the removal of pharmaceuticals from water. Journal of Molecular Liquids, 2019, 279, 669-676.	2.3	7
24	Obtaining granular activated carbon from paper mill sludge – A challenge for application in the removal of pharmaceuticals from wastewater. Science of the Total Environment, 2019, 653, 393-400.	3.9	43
25	Removal of pharmaceuticals from municipal wastewater by adsorption onto pyrolyzed pulp mill sludge. Arabian Journal of Chemistry, 2019, 12, 3611-3620.	2.3	49
26	Production of highly efficient activated carbons from industrial wastes for the removal of pharmaceuticals from water—A full factorial design. Journal of Hazardous Materials, 2019, 370, 212-218.	6.5	48
27	Effects of single and combined exposure of pharmaceutical drugs (carbamazepine and cetirizine) and a metal (cadmium) on the biochemical responses of R. philippinarum. Aquatic Toxicology, 2018, 198, 10-19.	1.9	35
28	Effects of carbamazepine and cetirizine under an ocean acidification scenario on the biochemical and transcriptome responses of the clam Ruditapes philippinarum. Environmental Pollution, 2018, 235, 857-868.	3.7	39
29	Paper pulp-based adsorbents for the removal of pharmaceuticals from wastewater: A novel approach towards diversification. Science of the Total Environment, 2018, 631-632, 1018-1028.	3.9	27
30	Waste-based alternative adsorbents for the remediation of pharmaceutical contaminated waters: Has a step forward already been taken?. Bioresource Technology, 2018, 250, 888-901.	4.8	67
31	Comparison of the toxicological impacts of carbamazepine and a mixture of its photodegradation products in Scrobicularia plana. Journal of Hazardous Materials, 2017, 323, 220-232.	6.5	33
32	Fixed-bed adsorption of Tricaine Methanesulfonate onto pyrolysed paper mill sludge. Aquacultural Engineering, 2017, 77, 53-60.	1.4	15
33	Single and multi-component adsorption of psychiatric pharmaceuticals onto alternative and commercial carbons. Journal of Environmental Management, 2017, 192, 15-24.	3.8	45
34	Ecotoxicity of the antihistaminic drug cetirizine to Ruditapes philippinarum clams. Science of the Total Environment, 2017, 601-602, 793-801.	3.9	24
35	Toxic effects of the antihistamine cetirizine in mussel Mytilus galloprovincialis. Water Research, 2017, 114, 316-326.	5.3	52
36	Physiological and biochemical alterations induced in the mussel Mytilus galloprovincialis after short and long-term exposure to carbamazepine. Water Research, 2017, 117, 102-114.	5.3	71

VâNIA CALISTO

#	Article	IF	CITATIONS
37	Toxicity associated to uptake and depuration of carbamazepine in the clam Scrobicularia plana under a chronic exposure. Science of the Total Environment, 2017, 580, 1129-1145.	3.9	23
38	Sludge from paper mill effluent treatment as raw material to produce carbon adsorbents: An alternative waste management strategy. Journal of Environmental Management, 2017, 188, 203-211.	3.8	55
39	Photochemical transformation of zearalenone in aqueous solutions under simulated solar irradiation: Kinetics and influence of water constituents. Chemosphere, 2017, 169, 146-154.	4.2	16
40	Removal of tricaine methanesulfonate from aquaculture wastewater by adsorption onto pyrolysed paper mill sludge. Chemosphere, 2017, 168, 139-146.	4.2	19
41	Comparative adsorption evaluation of biochars from paper mill sludge with commercial activated carbon for the removal of fish anaesthetics from water in Recirculating Aquaculture Systems. Aquacultural Engineering, 2016, 74, 76-83.	1.4	27
42	Long-term exposure of polychaetes to caffeine: Biochemical alterations induced in Diopatra neapolitana and Arenicola marina. Environmental Pollution, 2016, 214, 456-463.	3.7	40
43	Comparative valorisation of agricultural and industrial biowastes by combustion and pyrolysis. Bioresource Technology, 2016, 218, 918-925.	4.8	40
44	Caffeine impacts in the clam Ruditapes philippinarum: Alterations on energy reserves, metabolic activity and oxidative stress biomarkers. Chemosphere, 2016, 160, 95-103.	4.2	77
45	Hediste diversicolor as bioindicator of pharmaceutical pollution: Results from single and combined exposure to carbamazepine and caffeine. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2016, 188, 30-38.	1.3	26
46	Long-term exposure to caffeine and carbamazepine: Impacts on the regenerative capacity of the polychaete Diopatra neapolitana. Chemosphere, 2016, 146, 565-573.	4.2	53
47	The impacts of pharmaceutical drugs under ocean acidification: New data on single and combined long-term effects of carbamazepine on Scrobicularia plana. Science of the Total Environment, 2016, 541, 977-985.	3.9	80
48	Application of pyrolysed agricultural biowastes as adsorbents for fish anaesthetic (MS-222) removal from water. Journal of Analytical and Applied Pyrolysis, 2015, 112, 313-324.	2.6	16
49	Adsorptive removal of pharmaceuticals from water by commercial and waste-based carbons. Journal of Environmental Management, 2015, 152, 83-90.	3.8	115
50	Chronic toxicity of the antiepileptic carbamazepine on the clam Ruditapes philippinarum. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2015, 172-173, 26-35.	1.3	64
51	How life history influences the responses of the clam Scrobicularia plana to the combined impacts of carbamazepine and pH decrease. Environmental Pollution, 2015, 202, 205-214.	3.7	45
52	Removal of fluoxetine from water by adsorbent materials produced from paper mill sludge. Journal of Colloid and Interface Science, 2015, 448, 32-40.	5.0	54
53	The effects of carbamazepine on macroinvertebrate species: Comparing bivalves and polychaetes biochemical responses. Water Research, 2015, 85, 137-147.	5.3	74
54	Presence of the pharmaceutical drug carbamazepine in coastal systems: Effects on bivalves. Aquatic Toxicology, 2014, 156, 74-87.	1.9	140

VâNIA CALISTO

#	Article	IF	CITATIONS
55	Production of adsorbents by pyrolysis of paper mill sludge and application on the removal of citalopram from water. Bioresource Technology, 2014, 166, 335-344.	4.8	92
56	Adsorption of the antiepileptic carbamazepine onto agricultural soils. Journal of Environmental Monitoring, 2012, 14, 1597.	2.1	22
57	Direct photodegradation of carbamazepine followed by micellar electrokinetic chromatography and mass spectrometry. Water Research, 2011, 45, 1095-1104.	5.3	110
58	Photodegradation of psychiatric pharmaceuticals in aquatic environments – Kinetics and photodegradation products. Water Research, 2011, 45, 6097-6106.	5.3	116
59	Studying the interaction between triazines and humic substances—A new approach using open tubular capillary eletrochromatography. Talanta, 2011, 84, 424-429.	2.9	7
60	Adsorption behavior of $17\hat{l}_{\pm}$ -ethynylestradiol onto soils followed by fluorescence spectral deconvolution. Chemosphere, 2011, 84, 1072-1078.	4.2	23
61	Application of an ELISA to the quantification of carbamazepine in ground, surface and wastewaters and validation with LC–MS/MS. Chemosphere, 2011, 84, 1708-1715.	4.2	70
62	Noise normalisation in capillary electrophoresis using a diode array detector. Journal of Separation Science, 2011, 34, 1703-1707.	1.3	6
63	Design of Protonated Polyazamacrocycles Based on Phenanthroline Motifs for Selective Uptake of Aromatic Carboxylate Anions and Herbicides. Chemistry - A European Journal, 2009, 15, 3277-3289.	1.7	22
64	Psychiatric pharmaceuticals in the environment. Chemosphere, 2009, 77, 1257-1274.	4.2	328
65	Binding studies of a protonated dioxatetraazamacrocycle with carboxylate substrates. Tetrahedron, 2008, 64, 5392-5403.	1.0	19