
Lilia M Woods

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7119867/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dispersive interactions between standard and Dirac materials and the role of dimensionality. JPhys Materials, 2022, 5, 034001.	4.2	2
2	Vibrational properties and thermal transport in quaternary chalcogenides: The case of Te-based compositions. Physical Review Materials, 2021, 5, .	2.4	7
3	Off-stoichiometric semiconductors Cu1.33+xZn1.33-xIn1.33Se4 (x = 0, 0.1, 0.2 and 0.3): Synthesis, structure, and thermal and electrical properties. Journal of Solid State Chemistry, 2021, 297, 122058.	2.9	3
4	Perspective on Some Recent and Future Developments in Casimir Interactions. Applied Sciences (Switzerland), 2021, 11, 293.	2.5	11
5	A perspective on two-dimensional van der Waals opto-spin-caloritronics. Applied Physics Letters, 2021, 119, .	3.3	10
6	Thermoelectric transport control with metamaterial composites. Journal of Applied Physics, 2020, 128, .	2.5	7
7	Enhanced solar photothermal effect of PANi fabrics with plasmonic nanostructures. RSC Advances, 2020, 10, 28447-28453.	3.6	11
8	Exploring Phase Stability and Properties of Iâ€II 2 â€IIIâ€VI 4 Quaternary Chalcogenides. Advanced Theory and Simulations, 2020, 3, 2000041.	2.8	8
9	Optical Response of MoTe2 and WTe2 Weyl Semimetals: Distinguishing between Bulk and Surface Contributions. Advanced Theory and Simulations, 2020, 3, 1900247.	2.8	7
10	Giant spin Seebeck effect through an interface organic semiconductor. Materials Horizons, 2020, 7, 1413-1420.	12.2	29
11	Casimir force, causality, and the Gurzhi model. Physical Review B, 2020, 101, .	3.2	3
12	Signatures of complex optical response in Casimir interactions of type I and II Weyl semimetals. Communications Materials, 2020, 1, .	6.9	19
13	Synthesis, transport properties and electronic structure of p-type Cu1+xMn2â^'xInTe4 (x = 0, 0.2, 0.3). Dalton Transactions, 2020, 49, 2273-2279.	3.3	12
14	Advanced Thermoelectrics. Journal of Applied Physics, 2020, 127, 060401.	2.5	7
15	Transport theory within a generalized Boltzmann equation for multiband wave packets. Physical Review Research, 2020, 2, .	3.6	5
16	Confinement effects on the solar thermal heating process of TiN nanoparticle solutions. Physical Chemistry Chemical Physics, 2019, 21, 19915-19920.	2.8	13
17	Casimir Effects in 2D Dirac Materials (Scientific Summary). JETP Letters, 2019, 110, 183-192.	1.4	10
18	Multiband effects in equations of motion of observables beyond the semiclassical approach. New Journal of Physics, 2019, 21, 103007.	2.9	4

63

#	Article	IF	CITATIONS
19	Electronic structure properties of CuZn2InTe4 and AgZn2InTe4 quaternary chalcogenides. Journal of Applied Physics, 2019, 125, 155101.	2.5	17
20	Transformation optics for thermoelectric flow. JPhys Energy, 2019, 1, 025002.	5.3	10
21	Composition and stacking dependent topology in bilayers from the graphene family. Physical Review Materials, 2019, 3, .	2.4	8
22	Thermally driven anomalous Hall effect transitions in FeRh. Physical Review B, 2018, 97, .	3.2	9
23	Compositional Effects and Electron Loneâ€pair Distortions in Doped Bournonites. ChemPhysChem, 2018, 19, 2635-2644.	2.1	7
24	Synthesis, Structure, and Electrical Properties of the Single Crystal Ba ₈ Cu ₁₆ As ₃₀ . Inorganic Chemistry, 2018, 57, 9327-9334.	4.0	7
25	Structure and properties of DOTA-chelated radiopharmaceuticals within the ²²⁵ Ac decay pathway. MedChemComm, 2018, 9, 1155-1163.	3.4	11
26	Thermal Casimir and Casimir–Polder interactions in <i>N</i> parallel 2D Dirac materials. 2D Materials, 2018, 5, 035032.	4.4	30
27	Nonlocal optical response in topological phase transitions in the graphene family. Physical Review Materials, 2018, 2, .	2.4	20
28	Casimir force phase transitions in the graphene family. Nature Communications, 2017, 8, 14699.	12.8	56
29	Cage disorder and gas encapsulation as routes to tailor properties of inorganic clathrates. Acta Materialia, 2017, 131, 475-481.	7.9	6
30	Cloaking of Thermoelectric Transport. Scientific Reports, 2017, 7, 6988.	3.3	30
31	Polaronic transport in Ag-based quaternary chalcogenides. Journal of Applied Physics, 2017, 122, .	2.5	20
32	Structure and Transport Properties of Dense Polycrystalline Clathrate-II (K,Ba)16(Ga,Sn)136 Synthesized by a New Approach Employing SPS. Materials, 2016, 9, 732.	2.9	3
33	Casimir-Polder effect for a stack of conductive planes. Physical Review A, 2016, 94, .	2.5	35
34	High-pressure phases of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Mg</mml:mi><mml:r first principles. Physical Review B, 2016, 93, .</mml:r </mml:msub></mml:mrow></mml:math 	nr 3.2 <td>nl:2n6n></td>	nl:2n6n>
35	Graphene nanoribbons anchored to SiC substrates. Journal of Physics Condensed Matter, 2016, 28, 364001.	1.8	2

³⁶ Interlayer Interactions in van der Waals Heterostructures: Electron and Phonon Properties. ACS Applied Materials & amp; Interfaces, 2016, 8, 6286-6292. 8.0

#	Article	IF	CITATIONS
37	The Casimir effect for planar layered system. International Journal of Modern Physics A, 2016, 31, 1641028.	1.5	4
38	Charge-Induced Fluctuation Forces in Graphitic Nanostructures. Physical Review X, 2016, 6, .	8.9	7
39	A synthetic approach for enhanced thermoelectric properties of PEDOT:PSS bulk composites. Applied Physics Letters, 2015, 107, .	3.3	25
40	Bournonite PbCuSbS ₃ : Stereochemically Active Loneâ€Pair Electrons that Induce Low Thermal Conductivity. ChemPhysChem, 2015, 16, 3264-3270.	2.1	56
41	Casimir effect for a stack of conductive planes. Physical Review D, 2015, 92, .	4.7	14
42	Thermoelectricity in polymer composites due to fluctuation-induced tunneling. Physical Chemistry Chemical Physics, 2015, 17, 27883-27888.	2.8	8
43	van der Waals interactions between nanostructures: Some analytic results from series expansions. Physical Review A, 2014, 89, .	2.5	11
44	Casimir energy for surfaces with constant conductivity. Physical Review D, 2014, 89, .	4.7	11
45	Quantum and Thermal Dispersion Forces: Application to Graphene Nanoribbons. Physical Review Letters, 2014, 112, 025501.	7.8	16
46	Synthesis, transport properties, and electronic structure of Cu2CdSnTe4. Applied Physics Letters, 2014, 104, .	3.3	25
47	Transverse Electric Mode for Nearâ€Field Radiative Heat Transfer in Graphene–Metamaterial Systems. Advanced Optical Materials, 2014, 2, 1038-1042.	7.3	17
48	Ab Initio Investigation of Bi-Rich Bi1–x Sb x Alloys. Journal of Electronic Materials, 2014, 43, 3110-3116.	2.2	2
49	Tunable Spin-Dependent Properties of Zigzag Silicene Nanoribbons. Physical Review Applied, 2014, 1, .	3.8	26
50	Zigzag graphene nanoribbons with curved edges. RSC Advances, 2013, 3, 10014.	3.6	6
51	Temperature phase transition model for the DNA-CNTs-based nanotweezers. Journal of Mathematical Chemistry, 2013, 51, 278-288.	1.5	1
52	Dispersive interactions in graphitic nanostructures. Chemical Physics, 2013, 413, 116-122.	1.9	4
53	Near-field heat transfer between gold nanoparticle arrays. Journal of Applied Physics, 2013, 114, .	2.5	31
54	Radiative Exchange between Graphitic Nanostructures: A Microscopic Perspective. Journal of Physical Chemistry Letters, 2013, 4, 4196-4200.	4.6	3

#	Article	IF	CITATIONS
55	Van der Waals interactions between graphitic nanowiggles. Journal of Applied Physics, 2013, 114, 044308.	2.5	4
56	Repulsive interactions of a lipid membrane with graphene in composite materials. Journal of Chemical Physics, 2013, 139, 184703.	3.0	6
57	Surface plasmon resonances of protein-conjugated gold nanoparticles on graphitic substrates. Applied Physics Letters, 2013, 103, .	3.3	23
58	Thermodynamic stability of alkali-metal–zinc double-cation borohydrides at low temperatures. Physical Review B, 2013, 88, .	3.2	29
59	Magnetic field and nanostructuring effects on the thermoelectric performance of bismuth. Physical Review B, 2012, 85, .	3.2	5
60	Temperature dependent graphene suspension due to thermal Casimir interaction. Applied Physics Letters, 2012, 101, .	3.3	39
61	Effects of spatial dispersion on the Casimir force between graphene sheets. European Physical Journal B, 2012, 85, 1.	1.5	30
62	Interaction of a graphene sheet with a ferromagnetic metal plate. Physical Review B, 2012, 86, .	3.2	28
63	Folded graphene nanoribbons with single and double closed edges. Physical Review B, 2012, 85, .	3.2	15
64	Valleytronics, Carrier Filtering and Thermoelectricity in Bismuth: Magnetic Field Polarization Effects. Advanced Functional Materials, 2012, 22, 3945-3949.	14.9	15
65	Thermoelectric properties of Bi-doped PbTe composites. Journal of Applied Physics, 2011, 109, .	2.5	29
66	On the role of interband surface plasmons in carbon nanotubes. Optics and Spectroscopy (English) Tj ETQq0 0 C) rgBT /Ov	erlock 10 Tf 5
67	Chirality dependent carbon nanotube interactions. Physical Review B, 2011, 83, .	3.2	17
68	Casimir interactions between graphene sheets and metamaterials. Physical Review A, 2011, 84, .	2.5	50
69	Surface exciton-plasmons and optical response of small-diameter carbon nanotubes. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2010, 108, 376-384.	0.6	2
70	Enhanced thermoelectricity in composites by electronic structure modifications and nanostructuring. Applied Physics Letters, 2010, 97, .	3.3	37
71	Mechanical properties of defective single wall carbon nanotubes. Journal of Applied Physics, 2010, 107, 061803.	2.5	9
72	Many-Body van der Waals Interactions between Graphitic Nanostructures. Journal of Physical	4.6	49

Chemistry Letters, 2010, 1, 1356-1362. 72

#	Article	IF	CITATIONS
73	Casimir forces and graphene sheets. Physical Review B, 2010, 82, .	3.2	115
74	Telescopic hot double wall carbon nanotube for nanolithography. Applied Physics Letters, 2009, 95, 203507.	3.3	10
75	Electronic and magnetic properties of deformed and defective single wall carbon nanotubes. Carbon, 2009, 47, 3252-3262.	10.3	35
76	Electronic Structure Modulations of Radially Deformed Single Wall Carbon Nanotubes under Transverse External Electric Fields. Journal of Physical Chemistry C, 2009, 113, 4792-4796.	3.1	34
77	Model of transport properties of thermoelectric nanocomposite materials. Physical Review B, 2009, 79, .	3.2	168
78	Modeling of DNA Base Interactions with Carbon Nanotubes: ab initio Calculations and SEIRA Data. , 2009, , .		3
79	A carbon nanotube oscillator as a surface profiling device. Nanotechnology, 2008, 19, 435702.	2.6	26
80	Zero-point energy of a cylindrical layer of finite thickness. Physical Review A, 2008, 78, .	2.5	5
81	Electron spin dynamics due to hyperfine coupling in quantum dots. Physical Review B, 2008, 77, .	3.2	8
82	Adsorption of Adenine and Thymine and Their Radicals on Single-Wall Carbon Nanotubes. Journal of Physical Chemistry C, 2007, 111, 18174-18181.	3.1	75
83	Adsorption of simple benzene derivatives on carbon nanotubes. Physical Review B, 2007, 75, .	3.2	195
84	Electron Spin Decoherence due to Hyperfine Coupling in Quantum Dots. AIP Conference Proceedings, 2005, , .	0.4	0
85	Electronic structure ofCa2RuO4:A comparison with the electronic structures of other ruthenates. Physical Review B, 2000, 62, 7833-7838.	3.2	17
86	Electron-phonon effects in graphene and armchair (10,10) single-wall carbon nanotubes. Physical Review B, 2000, 61, 10651-10663.	3.2	99
87	Phonon-modulated electron-electron interactions. Physical Review B, 1999, 60, 5276-5281.	3.2	6
88	Multilayer Thermionic Refrigeration. Physical Review Letters, 1998, 80, 4016-4019.	7.8	339
89	Nonlinear electron-phonon heat exchange. Physical Review B, 1998, 57, 7679-7685.	3.2	3
90	Thermoelectric efficiency of anisotropic materials with an application in layered systems. JPhys Energy, 0, , .	5.3	0