Fabrizio Passarini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7119251/publications.pdf

Version: 2024-02-01

91 4,203 papers citations

36 h-index 62 g-index

93 all docs 93 docs citations 93 times ranked 5647 citing authors

#	Article	IF	CITATIONS
1	Environmental sustainability assessment of organic vineyard practices from a life cycle perspective. International Journal of Environmental Science and Technology, 2022, 19, 4645-4658.	1.8	9
2	Environmental Impact of Meals: How Big Is the Carbon Footprint in the School Canteens?. Foods, 2022, 11, 193.	1.9	6
3	Glycidol syntheses and valorizations: Boosting the glycerol biorefinery. Current Opinion in Green and Sustainable Chemistry, 2022, 35, 100624.	3.2	5
4	The role of outdoor and indoor air quality in the spread of SARS-CoV-2: Overview and recommendations by the research group on COVID-19 and particulate matter (RESCOP commission). Environmental Research, 2022, 211, 113038.	3.7	42
5	The role of carbon capture, utilization, and storage for economic pathways that limit global warming to below 1.5°C. IScience, 2022, 25, 104237.	1.9	22
6	Carbon Fibers Waste Recovery via Pyro-Gasification: Semi-Industrial Pilot Plant Testing and LCA. Sustainability, 2022, 14, 3744.	1.6	3
7	Nexus analysis and life cycle assessment of regional water supply systems: A case study from Italy. Resources, Conservation and Recycling, 2022, 185, 106446.	5.3	10
8	AIRSENSE-TO-ACT: A Concept Paper for COVID-19 Countermeasures Based on Artificial Intelligence Algorithms and Multi-Source Data Processing. ISPRS International Journal of Geo-Information, 2021, 10, 34.	1.4	10
9	Environmental analysis of crop rotations through the application of the Cereal Unit approach. Ecological Indicators, 2021, 121, 107199.	2.6	5
10	Biogas to Syngas through the Combined Steam/Dry Reforming Process: An Environmental Impact Assessment. Energy & Samp; Fuels, 2021, 35, 4224-4236.	2.5	18
11	Influence of inorganic anions from atmospheric depositions on weathering steel corrosion and metal release. Construction and Building Materials, 2020, 236, 117515.	3.2	14
12	Combining the highest degradation efficiency with the lowest environmental impact in zinc oxide based photocatalytic systems. Journal of Cleaner Production, 2020, 252, 119762.	4.6	13
13	Bioenergy with carbon emissions capture and utilisation towards GHG neutrality: Power-to-Gas storage via hydrothermal gasification. Applied Energy, 2020, 280, 115923.	5.1	27
14	Life Cycle Assessment (LCA) of Environmental and Energy Systems. Energies, 2020, 13, 5892.	1.6	16
15	Potential role of particulate matter in the spreading of COVID-19 in Northern Italy: first observational study based on initial epidemic diffusion. BMJ Open, 2020, 10, e039338.	0.8	172
16	SARS-Cov-2RNA found on particulate matter of Bergamo in Northern Italy: First evidence. Environmental Research, 2020, 188, 109754.	3.7	381
17	Airborne Transmission Route of COVID-19: Why 2 Meters/6 Feet of Inter-Personal Distance Could Not Be Enough. International Journal of Environmental Research and Public Health, 2020, 17, 2932.	1.2	519
18	Searching for SARS-COV-2 on Particulate Matter: A Possible Early Indicator of COVID-19 Epidemic Recurrence. International Journal of Environmental Research and Public Health, 2020, 17, 2986.	1.2	99

#	Article	IF	Citations
19	LCA Integration Within Sustainability Metrics for Chemical Companies. , 2020, , 53-73.		5
20	Exploring future copper demand, recycling and associated greenhouse gas emissions in the EU-28. Global Environmental Change, 2020, 63, 102093.	3.6	56
21	Terephthalic acid from renewable sources: early-stage sustainability analysis of a bio-PET precursor. Green Chemistry, 2019, 21, 885-896.	4.6	84
22	On the Spatial Dimension of the Circular Economy. Resources, 2019, 8, 32.	1.6	25
23	Catalytic Biorefining of Ethanol from Wine Waste to Butanol and Higher Alcohols: Modeling the Life Cycle Assessment and Process Design. ACS Sustainable Chemistry and Engineering, 2019, 7, 224-237.	3.2	35
24	Recovering the "new twin― Analysis of secondary neodymium sources and recycling potentials in Europe. Resources, Conservation and Recycling, 2019, 142, 143-152.	5.3	56
25	Backlighting the European Indium Recycling Potentials. Journal of Industrial Ecology, 2019, 23, 426-437.	2.8	38
26	First Attempt of Glycidolâ€ŧoâ€Monoalkyl Glyceryl Ethers Conversion by Acid Heterogeneous Catalysis: Synthesis and Simplified Sustainability Assessment. ChemSusChem, 2018, 11, 1829-1837.	3.6	20
27	Acetonitrile from Bioethanol Ammoxidation: Process Design from the Grass-Roots and Life Cycle Analysis. ACS Sustainable Chemistry and Engineering, 2018, 6, 5441-5451.	3.2	30
28	Effect of fuel quality classes on the emissions of a residential wood pellet stove. Fuel, 2018, 211, 269-277.	3.4	40
29	Sustainability of a bio-waste treatment plant: Impact evolution resulting from technological improvements. Journal of Cleaner Production, 2018, 171, 1006-1019.	4.6	35
30	Shedding Light on the Anthropogenic Europium Cycle in the EU–28. Marking Product Turnover and Energy Progress in the Lighting Sector. Resources, 2018, 7, 59.	1.6	13
31	APPLICATION OF LCA METHODOLOGY IN THE ASSESSMENT OF A PYROLYSIS PROCESS FOR TYRES RECYCLING. Environmental Engineering and Management Journal, 2018, 17, 2437-2445.	0.2	12
32	Application of switchable hydrophilicity solvents for recycling multilayer packaging materials. Green Chemistry, 2017, 19, 1714-1720.	4.6	63
33	Glycidol, a Valuable Substrate for the Synthesis of Monoalkyl Glyceryl Ethers: A Simplified Life Cycle Approach. ChemSusChem, 2017, 10, 2291-2300.	3.6	29
34	The European PVC cycle: In-use stock and flows. Resources, Conservation and Recycling, 2017, 123, 108-116.	5.3	98
35	Urban Mines of Copper: Size and Potential for Recycling in the EU. Resources, 2017, 6, 6.	1.6	47
36	Biomass Residues to Renewable Energy: A Life Cycle Perspective Applied at a Local Scale. Energies, 2016, 9, 922.	1.6	37

#	Article	IF	CITATIONS
37	A simplified early stage assessment of process intensification: glycidol as a value-added product from epichlorohydrin industry wastes. Green Chemistry, 2016, 18, 4559-4570.	4.6	87
38	Weathering steel as a potential source for metal contamination: Metal dissolution during 3-year of field exposure in a urban coastal site. Environmental Pollution, 2016, 213, 571-584.	3.7	17
39	Butadiene from biomass, a life cycle perspective to address sustainability in the chemical industry. Green Chemistry, 2016, 18, 1625-1638.	4.6	126
40	Evaluation of non-steady state condition contribution to the total emissions of residential wood pellet stove. Energy, 2015, 88, 650-657.	4.5	13
41	Feasibility of Industrial Symbiosis in Italy as an Opportunity for Economic Development: Critical Success Factor Analysis, Impact and Constrains of the Specific Italian Regulations. Waste and Biomass Valorization, 2015, 6, 865-874.	1.8	21
42	Life cycle inventory improvement in the pharmaceutical sector: assessment of the sustainability combining PMI and LCA tools. Green Chemistry, 2015, 17, 3390-3400.	4.6	90
43	Glycerol as feedstock in the synthesis of chemicals: a life cycle analysis for acrolein production. Green Chemistry, 2015, 17, 343-355.	4.6	79
44	ASSESSMENT OF INDOOR POLLUTION IN A SCHOOL ENVIRONMENT THROUGH BOTH PASSIVE AND CONTINUOUS SAMPLINGS. Environmental Engineering and Management Journal, 2015, 14, 1761-1770.	0.2	11
45	Chemistry in a sustainable society. Environmental Science and Pollution Research, 2014, 21, 13149-13151.	2.7	0
46	Aluminium flows in vehicles: enhancing the recovery at end-of-life. Journal of Material Cycles and Waste Management, 2014, 16, 39-45.	1.6	13
47	Heating systems LCA: comparison of biomass-based appliances. International Journal of Life Cycle Assessment, 2014, 19, 89-99.	2.2	47
48	An international comparative study of end-of-life vehicle (ELV) recycling systems. Journal of Material Cycles and Waste Management, 2014, 16, 1-20.	1.6	190
49	Source apportionment and location by selective wind sampling and Positive Matrix Factorization. Environmental Science and Pollution Research, 2014, 21, 11634-11648.	2.7	11
50	Environmental impact assessment of a WtE plant after structural upgrade measures. Waste Management, 2014, 34, 753-762.	3.7	25
51	Markers and influence of open biomass burning on atmospheric particulate size and composition during a major bonfire event. Atmospheric Environment, 2014, 82, 218-225.	1.9	52
52	Historical evolution of greenhouse gas emissions from aluminum production at a country level. Journal of Cleaner Production, 2014, 84, 540-549.	4.6	23
53	Life Cycle Assessment comparison of two ways for acrylonitrile production: the SOHIO process and an alternative route using propane. Journal of Cleaner Production, 2014, 69, 17-25.	4.6	49
54	The environmental impact of a municipal solid waste incinerator: 15 years of monitoring. WIT Transactions on Ecology and the Environment, 2014 , , .	0.0	2

#	Article	IF	CITATIONS
55	Historical evolution of anthropogenic aluminum stocks and flows in Italy. Resources, Conservation and Recycling, 2013, 72, 1-8.	5.3	43
56	Bulk deposition close to a Municipal Solid Waste incinerator: One source among many. Science of the Total Environment, 2013, 456-457, 392-403.	3.9	23
57	Auto shredder residue recycling: Mechanical separation and pyrolysis. Waste Management, 2012, 32, 852-858.	3.7	69
58	Atmospheric corrosion of Cor-Ten steel with different surface finish: Accelerated ageing and metal release. Materials Chemistry and Physics, 2012, 136, 477-486.	2.0	28
59	The characterization of Snâ€based corrosion products in ancient bronzes: a Raman approach. Journal of Raman Spectroscopy, 2012, 43, 1596-1603.	1.2	59
60	Auto shredder residue LCA: implications of ASR composition evolution. Journal of Cleaner Production, 2012, 23, 28-36.	4.6	60
61	PCDD/Fs atmospheric deposition fluxes and soil contamination close to a municipal solid waste incinerator. Chemosphere, 2011, 83, 1366-1373.	4.2	28
62	End-of-Life Vehicles management: Italian material and energy recovery efficiency. Waste Management, 2011, 31, 489-494.	3.7	106
63	Indicators of waste management efficiency related to different territorial conditions. Waste Management, 2011, 31, 785-792.	3.7	77
64	Risk assessment applied to air emissions from a medium-sized Italian MSW incinerator. Waste Management and Research, 2011, 29, S48-S56.	2.2	15
65	A comparison among different automotive shredder residue treatment processes. International Journal of Life Cycle Assessment, 2010, 15, 896-906.	2.2	73
66	Assessment of Ecodesign potential in reaching new recycling targets. Resources, Conservation and Recycling, 2010, 54, 1128-1134.	5.3	41
67	Automotive shredder residue (ASR) characterization for a valuable management. Waste Management, 2010, 30, 2228-2234.	3.7	97
68	The atmospheric corrosion of quaternary bronzes: The action of stagnant rain water. Corrosion Science, 2010, 52, 3002-3010.	3.0	46
69	Chemical characterisation of spent rechargeable batteries. Waste Management, 2009, 29, 2332-2335.	3.7	45
70	Chemical composition of wet and dry atmospheric depositions in an urban environment: local, regional and long-range influences. Journal of Atmospheric Chemistry, 2008, 59, 151-170.	1.4	17
71	Reuse of incinerator bottom and fly ashes to obtain glassy materials. Journal of Hazardous Materials, 2008, 153, 1270-1274.	6.5	54
72	Environmental impacts of waste incineration in a regional system (Emilia Romagna, Italy) evaluated from a life cycle perspective. Journal of Hazardous Materials, 2008, 159, 505-511.	6.5	67

#	Article	IF	Citations
73	Integrated Waste Management. Technologies and Environmental Control. , 2008, , 159-170.		1
74	Integrated Waste Management. Technologies and Environmental Control., 2008,, 159-170.		0
75	Assessment and comparison of the environmental performances of a regional incinerator network. Waste Management, 2007, 27, S85-S91.	3.7	21
76	Critical Loads for Cd and Pb in the Province of Bologna. Annali Di Chimica, 2006, 96, 697-705.	0.6	1
77	Integrated waste management of special and municipal waste – a territorial case study. WIT Transactions on Ecology and the Environment, 2006, , .	0.0	0
78	Tools for evaluation of impact associated with MSW incineration: LCA and integrated environmental monitoring system. Waste Management, 2005, 25, 191-196.	3.7	43
79	Heavy metals monitoring at a Mediterranean natural ecosystem of Central Italy. Trends in different environmental matrixes. Environment International, 2004, 30, 173-181.	4.8	32
80	Soluble and insoluble fractions of heavy metals in wet and dry atmospheric depositions in Bologna, Italy. Environmental Pollution, 2003, 124, 457-469.	3.7	99
81	Heavy metals as indicators for an integrated environmental monitoring system. European Physical Journal Special Topics, 2003, 107, 891-894.	0.2	2
82	Critical loads and exceedences of Cd and Pb in a Northern Italy area. European Physical Journal Special Topics, 2003, 107, 895-898.	0.2	1
83	The atmospheric monitoring in a protected area. Annali Di Chimica, 2003, 93, 117-27.	0.6	0
84	Application of an integrated environmental monitoring system to an incineration plant. Science of the Total Environment, 2002, 289, 177-188.	3.9	26
85	The environmental fate of heavy metals arising from a MSW incineration plant. Waste Management, 2002, 22, 875-881.	3.7	31
86	Long-term atmospheric deposition wet-dry fluxes. Critical loads exceedences in an urban area. Annali Di Chimica, 2001, 91, 459-69.	0.6	1
87	Chemical analyses of heavy metal contamination in sediments of the Venice Lagoon and toxicological implications. Annali Di Chimica, 2001, 91, 471-8.	0.6	0
88	Biochemical and histochemical responses to environmental contaminants in clam, Tapes philippinarum, transplanted to different polluted areas of Venice Lagoon, Italy. Marine Environmental Research, 2000, 50, 425-430.	1.1	41
89	Methodological approach for an integrated environmental monitoring system relative to heavy metals from an incineration plant. Annali Di Chimica, 2000, 90, 723-32.	0.6	1
90	Material system analysis: Characterization of flows, stocks, and performance indicators of manganese, nickel, and natural graphite in the EU, 2012–2016. Journal of Industrial Ecology, 0, , .	2.8	3

#	Article	IF	CITATIONS
91	Still edible wasted food from households: A regional Italian case study. Waste Management and Research, 0, , 0734242X2211054.	2.2	O