Marijn Berg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7118891/publications.pdf

Version: 2024-02-01

		1039880	1199470	
13	3,082	9	12	
papers	citations	h-index	g-index	
			0.50.5	
15	15	15	8696	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	The discovAIR project: a roadmap towards the Human Lung Cell Atlas. European Respiratory Journal, 2022, 60, 2102057.	3.1	15
2	Cellâ€type <scp>eQTL</scp> deconvolution of bronchial epithelium through integration of singleâ€eell and bulk <scp>RNA</scp> â€seq. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 3663-3666.	2.7	0
3	Acute cigarette smokeâ€induced <scp>eQTL</scp> affects formyl peptide receptor expression and lung function. Respirology, 2021, 26, 233-240.	1.3	7
4	Periostin: contributor to abnormal airway epithelial function in asthma?. European Respiratory Journal, 2021, 57, 2001286.	3.1	27
5	Human airway mast cells proliferate and acquire distinct inflammation-driven phenotypes during type 2 inflammation. Science Immunology, 2021, 6, .	5.6	79
6	Glutathione S-transferases and their implications in the lung diseases asthma and chronic obstructive pulmonary disease: Early life susceptibility?. Redox Biology, 2021, 43, 101995.	3.9	25
7	MiRâ€31â€5p: A shared regulator of chronic mucus hypersecretion in asthma and chronic obstructive pulmonary disease. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 703-706.	2.7	11
8	Gene signatures from scRNAâ€seq accurately quantify mast cells in biopsies in asthma. Clinical and Experimental Allergy, 2020, 50, 1428-1431.	1.4	16
9	Nasal DNA methylation profiling of asthma and rhinitis. Journal of Allergy and Clinical Immunology, 2020, 145, 1655-1663.	1.5	56
10	SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nature Medicine, 2020, 26, 681-687.	15.2	2,182
11	SARS-CoV-2 Entry Genes Are Most Highly Expressed in Nasal Goblet and Ciliated Cells within Human Airways. ArXiv Org, 2020, , .	1.2	1
12	A cellular census of human lungs identifies novel cell states in health and in asthma. Nature Medicine, 2019, 25, 1153-1163.	15.2	631
13	Nasal epithelium as a proxy for bronchial epithelium for smoking-induced gene expression and expression Quantitative Trait Loci. Journal of Allergy and Clinical Immunology, 2018, 142, 314-317.e15.	1.5	32