Andrei V Rode

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7118803/publications.pdf

Version: 2024-02-01

215 papers

6,925 citations

66234 42 h-index 79 g-index

217 all docs

217 docs citations

217 times ranked

5558 citing authors

#	Article	IF	CITATIONS
1	Formation of nanochannels in sapphire with ultrashort Bessel pulses. Optics Express, 2022, 30, 6016.	1.7	1
2	Ultrashort pulsed laser ablation of granite for stone conservation. Optics and Laser Technology, 2022, 151, 108057.	2.2	12
3	Optical Funnel to Guide and Focus Virus Particles for X-Ray Diffractive Imaging. Physical Review Applied, 2022, 17, .	1.5	0
4	Hearts and Homes: The Potential of Conservation Laser Cleaning for Post-disaster Wellbeing and Waste Reduction. Studies in Conservation, 2022, 67, 309-318.	0.6	1
5	Using Diffuse Scattering to Observe X-Ray-Driven Nonthermal Melting. Physical Review Letters, 2021, 126, 015703.	2.9	10
6	Megahertz single-particle imaging at the European XFEL. Communications Physics, 2020, 3, .	2.0	58
7	High-Pressure Silicon Phase Created by High Power Ultrashort Laser Pulse at the Intensity of 1019 W/cm2. , 2020, , .		0
8	Investigation of the effects of femtosecond laser metal surface texturing on bonding of PA 6 to steel. Procedia Manufacturing, 2019, 29, 313-320.	1.9	6
9	Ultrafast anisotropic disordering in graphite driven by intense hard X-ray pulses. High Energy Density Physics, 2019, 32, 63-69.	0.4	13
10	Developing a needle-like optical funnel: numerical modelling. , 2019, , .		1
10	Developing a needle-like optical funnel: numerical modelling., 2019,,. Ultrafast re-structuring of the electronic landscape of transparent dielectrics: new material states (Die-Met). Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	23
	Ultrafast re-structuring of the electronic landscape of transparent dielectrics: new material states	1.1	
11	Ultrafast re-structuring of the electronic landscape of transparent dielectrics: new material states (Die-Met). Applied Physics A: Materials Science and Processing, 2018, 124, 1. Femtosecond X-ray diffraction from an aerosolized beam of protein nanocrystals. Journal of Applied		23
11 12	Ultrafast re-structuring of the electronic landscape of transparent dielectrics: new material states (Die-Met). Applied Physics A: Materials Science and Processing, 2018, 124, 1. Femtosecond X-ray diffraction from an aerosolized beam of protein nanocrystals. Journal of Applied Crystallography, 2018, 51, 133-139. Extreme Energy Density Confined Inside a Transparent Crystal: Status and Perspectives of	1.9	23 18
11 12 13	Ultrafast re-structuring of the electronic landscape of transparent dielectrics: new material states (Die-Met). Applied Physics A: Materials Science and Processing, 2018, 124, 1. Femtosecond X-ray diffraction from an aerosolized beam of protein nanocrystals. Journal of Applied Crystallography, 2018, 51, 133-139. Extreme Energy Density Confined Inside a Transparent Crystal: Status and Perspectives of Solid-Plasma-Solid Transformations. Nanomaterials, 2018, 8, 555.	1.9	23 18 5
11 12 13 14	Ultrafast re-structuring of the electronic landscape of transparent dielectrics: new material states (Die-Met). Applied Physics A: Materials Science and Processing, 2018, 124, 1. Femtosecond X-ray diffraction from an aerosolized beam of protein nanocrystals. Journal of Applied Crystallography, 2018, 51, 133-139. Extreme Energy Density Confined Inside a Transparent Crystal: Status and Perspectives of Solid-Plasma-Solid Transformations. Nanomaterials, 2018, 8, 555. Rapid sample delivery for megahertz serial crystallography at X-ray FELs. IUCrJ, 2018, 5, 574-584. Post-sample aperture for low background diffraction experiments at X-ray free-electron lasers.	1.9 1.9 1.0	23 18 5 52
11 12 13 14	Ultrafast re-structuring of the electronic landscape of transparent dielectrics: new material states (Die-Met). Applied Physics A: Materials Science and Processing, 2018, 124, 1. Femtosecond X-ray diffraction from an aerosolized beam of protein nanocrystals. Journal of Applied Crystallography, 2018, 51, 133-139. Extreme Energy Density Confined Inside a Transparent Crystal: Status and Perspectives of Solid-Plasma-Solid Transformations. Nanomaterials, 2018, 8, 555. Rapid sample delivery for megahertz serial crystallography at X-ray FELs. IUCrJ, 2018, 5, 574-584. Post-sample aperture for low background diffraction experiments at X-ray free-electron lasers. Journal of Synchrotron Radiation, 2017, 24, 1296-1298. Dynamic axial control over optically levitating particles in air with an electrically-tunable	1.9 1.0 1.0	23 18 5 52 8

#	Article	IF	Citations
19	[INVITED] Coupling of polarisation of high frequency electric field and electronic heat conduction in laser created plasma. Optics and Laser Technology, 2016, 82, 69-71.	2.2	2
20	Ultrafast laser-induced micro-explosion: material modification tool. , 2016, , .		0
21	Optically Induced Forces Imposed in an Optical Funnel on a Stream of Particles in Air or Vacuum. Physical Review Applied, 2015, 4, .	1.5	37
22	Simple convergent-nozzle aerosol injector for single-particle diffractive imaging with X-ray free-electron lasers. Structural Dynamics, 2015, 2, 041717.	0.9	23
23	Photoluminescence from voids created by femtosecond-laser pulses inside cubic-BN. Optics Letters, 2015, 40, 5711.	1.7	27
24	Treating the Untreatable in Art and Heritage Materials: Ultrafast Laser Cleaning of "Cloth-of-Gold― Langmuir, 2015, 31, 1596-1604.	1.6	17
25	Experimental evidence of new tetragonal polymorphs of silicon formed through ultrafast laser-induced confined microexplosion. Nature Communications, 2015, 6, 7555.	5.8	122
26	Toward steering a jet of particles into an x-ray beam with optically induced forces. , 2015, , .		0
27	Shaping self-imaging bottle beams with modified quasi-Bessel beams. Optics Letters, 2014, 39, 2278.	1.7	20
28	Transient optical properties of dielectrics and semiconductors excited by an ultrashort laser pulse. Journal of the Optical Society of America B: Optical Physics, 2014, 31, C36.	0.9	34
29	Self-limited underdense microplasmas in bulk silicon induced by ultrashort laser pulses. Applied Physics Letters, 2014, 105, .	1.5	43
30	Phase Transformation in Laserâ€Induced Microâ€Explosion in Olivine (Fe,Mg) ₂ SiO ₄ . Advanced Engineering Materials, 2014, 16, 767-773.	1.6	16
31	Confined micro-explosion induced by ultrashort laser pulse at SiO2/Si interface. Applied Physics A: Materials Science and Processing, 2014, 114, 33-43.	1.1	12
32	Ultrafast Laser Induced Confined Microexplosion: A New Route to Form Super-Dense Material Phases. Springer Series in Materials Science, 2014, , 3-26.	0.4	3
33	Physics of ultra-short laser interaction with matter: From phonon excitation to ultimate transformations. Progress in Quantum Electronics, 2013, 37, 215-323.	3.5	130
34	Electron–phonon energy relaxation in bismuth excited by ultrashort laser pulse: temperature and fluence dependence. Applied Physics A: Materials Science and Processing, 2013, 110, 529-535.	1.1	7
35	Quasi-Bessel hollow beam as optical guide for micro-particles. , 2013, , .		2
36	Generation of high energy density by fs-laser-induced confined microexplosion. New Journal of Physics, 2013, 15, 025018.	1.2	33

#	Article	IF	Citations
37	Hollow Bessel-like beam as an optical guide for a stream of microscopic particles. Optics Express, 2013, 21, 30492.	1.7	35
38	Ultrafast electronic relaxation in superheated bismuth. New Journal of Physics, 2013, 15, 013035.	1.2	16
39	Optical injector of particles for X-ray diffractive imaging. , 2013, , .		O
40	Selective localised modifications of silicon crystal by ultrafast laser induced micro-explosion. Proceedings of SPIE, 2013, , .	0.8	0
41	Bessel Beam as Optical Injector of Particles for X-ray Morphology. , 2013, , .		0
42	Optical Injector of Particles for X-ray Diffractive Imaging. , 2013, , .		0
43	Evidence of New High-Pressure Silicon Phases in Fs-Laser Induced Confined Microexplosion. , 2013, , .		0
44	Polarization-sensitive Femtosecond Laser Ablation with Tightly Focused Vortex Pulses. , 2012, , .		1
45	Optical manipulation of particle ensembles in air. Optics Letters, 2012, 37, 1934.	1.7	46
46	Polarization-dependent ablation of silicon using tightly focused femtosecond laser vortex pulses. Optics Letters, 2012, 37, 226.	1.7	77
47	Polarization-sensitive photophoresis. Applied Physics Letters, 2012, 101, 051106.	1.5	22
48	Warm dense matter at the bench-top: Fs-laser-induced confined micro-explosion. High Energy Density Physics, 2012, 8, 13-17.	0.4	24
49	Synthesis of super-dense phase of aluminum under extreme pressure and temperature conditions created by femtosecond laser pulses in sapphire. , 2012, , .		4
50	Effect of polarization on transport of particles in air by optical vortex beam. Journal of Optics (United Kingdom), 2012, 14, 055302.	1.0	9
51	Manipulating Airborne Particles with an Optical Bottle. Optics and Photonics News, 2012, 23, 49.	0.4	0
52	Water Droplet Motion Control on Superhydrophobic Surfaces: Exploiting the Wenzel-to-Cassie Transition. Langmuir, 2011, 27, 2595-2600.	1.6	118
53	Revealing Local Field Structure of Focused Ultrashort Pulses. Physical Review Letters, 2011, 106, 123901.	2.9	221
54	Reply to Comment on Water Droplet Motion Control on Superhydrophobic Surfaces: Exploiting the Wenzel-to-Cassie Transition. Langmuir, 2011, 27, 13962-13963.	1.6	4

#	Article	IF	CITATIONS
55	Evidence of superdense aluminium synthesized by ultrafast microexplosion. Nature Communications, 2011, 2, 445.	5.8	151
56	Robust trapping and manipulation of airborne particles with a bottle beam. Optics Express, 2011, 19, 17350.	1.7	105
57	Observation of O_2 inside voids formed in GeO_2 glass by tightly-focused fs-laser pulses. Optical Materials Express, 2011, 1, 1150.	1.6	39
58	Materials Processing with Femtosecond Vortex Pulses. , 2011, , .		0
59	Structural Characterization of Femtosecond Laser Modified Regions Inside Sapphire. Journal of Nanoscience and Nanotechnology, 2011, 11, 2931-2936.	0.9	5
60	SU-8 protective layer in photo-resist patterning on As2S3 film. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 3183-3186.	0.8	11
61	Evaluation of forces levitating a particle in optical vortex beam. , 2011, , .		O
62	Super-dense Al formed by ultrafast laser microexplosion., 2011,,.		1
63	Electron-phonon relaxation in metals excited by ultra-short laser pulse. , 2011, , .		0
64	Polarization dependent forces in optical vortex pipeline., 2011,,.		0
65	Synthesis of Materials by Ultrafast Microexplosion. , 2011, , .		0
66	Speckle Field As A Multiple Particle Trap. AIP Conference Proceedings, 2010, , .	0.3	1
67	Optical vortex beams for trapping and transport of particles in air. Applied Physics A: Materials Science and Processing, 2010, 100, 327-331.	1.1	46
68	Thermal annealing of arsenic tri-sulphide thin film and its influence on device performance. Journal of Applied Physics, 2010, 107, 053106.	1.1	39
69	Speckle field as a multiple particle trap. Proceedings of SPIE, 2010, , .	0.8	2
70	Giant Optical Manipulation. Physical Review Letters, 2010, 105, 118103.	2.9	261
71	Submicrometer-Thick Low-Loss As\$_2\$S\$_3\$ Planar Waveguides for Nonlinear Optical Devices. IEEE Photonics Technology Letters, 2010, 22, 495-497.	1.3	44
72	Modification of refractive index by a single femtosecond pulse confined inside a bulk of a photorefractive crystal. Physical Review B, 2010, 81, .	1.1	38

#	Article	IF	Citations
73	Selective trapping of multiple particles by volume speckle field. Optics Express, 2010, 18, 3137.	1.7	104
74	Efficient beam converter for the generation of high-power femtosecond vortices. Optics Letters, 2010, 35, 2660.	1.7	56
75	Materials processing with a tightly focused femtosecond laser vortex pulse. Optics Letters, 2010, 35, 3417.	1.7	173
76	Optical Pipeline: Trapping and Guiding of Airborne Particles. Optics and Photonics News, 2010, 21, 37.	0.4	2
77	Laser speckle field as a multiple particle trap. Journal of Optics (United Kingdom), 2010, 12, 124003.	1.0	32
78	Structural changes in femtosecond laser modified regions inside fused silica. Journal of Optics (United Kingdom), 2010, 12, 124007.	1.0	21
79	Green light-induced annealing of As2S3 thin films and its impact on waveguides performance. , 2010, , .		0
80	Focused femtosecond vortex laser pulse. , 2010, , .		0
81	Expansion-limited aggregation of nanoclusters in a single-pulse laser-produced plume. Physical Review B, 2009, 80, .	1.1	22
82	Optical vortex pipeline., 2009,,.		0
83	Fabrication of sub-micron Thick, low loss As <inf>2</inf> S <inf>3</inf> planar waveguides. , 2009, , .		0
84	BoschettoetÂal.Reply:. Physical Review Letters, 2009, 102, .	2.9	0
85	Ultrafast laser induced microexplosion: A new strategy to synthesise super-dense nanomaterials. , 2009, , .		0
86	On the properties and stability of thermally evaporated Ge–As–Se thin films. Applied Physics A: Materials Science and Processing, 2009, 96, 615-625.	1.1	76
87	Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing. Optics Express, 2009, 17, 2182.	1.7	117
88	Optical guiding of absorbing nanoclusters in air. Optics Express, 2009, 17, 5743.	1.7	222
89	Photophoretic manipulation of absorbing aerosol particles with vortex beams: theory versus experiment. Optics Express, 2009, 17, 8201.	1.7	188
90	Transient Dielectric Function of Fs-Laser Excited Bismuth. Springer Series in Chemical Physics, 2009, , 217-219.	0.2	4

#	Article	IF	Citations
91	Formation of nano-voids in transparent dielectrics by femtosecond lasers. Current Applied Physics, 2008, 8, 412-415.	1.1	20
92	Lifetime of optical phonons in fs-laser excited bismuth. Applied Physics A: Materials Science and Processing, 2008, 92, 873-876.	1.1	10
93	Laser induced memory bits in photorefractive LiNbO3 and LiTaO3. Applied Physics A: Materials Science and Processing, 2008, 93, 129-133.	1.1	20
94	Scanning the laser beam for ultrafast pulse laser cleaning of paint. Applied Physics A: Materials Science and Processing, 2008, 93, 135-139.	1.1	23
95	Ultrafast laser ablation for restoration of heritage objects. Applied Surface Science, 2008, 254, 3137-3146.	3.1	36
96	Three-dimensional write–read–erase memory bits by femtosecond laser pulses in photorefractive LiNbO3 crystals. Current Applied Physics, 2008, 8, 416-419.	1.1	12
97	Chalcogenide glass photonic crystals. Photonics and Nanostructures - Fundamentals and Applications, 2008, 6, 3-11.	1.0	48
98	Surface Oxidation of Ge ₃₃ As ₁₂ Se ₅₅ Films. Journal of the American Ceramic Society, 2008, 91, 2371-2373.	1.9	2
99	Plasma etching of As2S3 films for optical waveguides. Journal of Non-Crystalline Solids, 2008, 354, 3179-3183.	1.5	31
100	A protective layer on As2S3 film for photo-resist patterning. Journal of Non-Crystalline Solids, 2008, 354, 5253-5254.	1.5	14
101	The evolution of bond structure in Ge33As12Se55 films upon thermal annealing. Journal of Non-Crystalline Solids, 2008, 354, 5264-5265.	1.5	0
102	Generation of optical bottle beams by incoherent white-light vortices. Optics Express, 2008, 16, 20902.	1.7	36
103	Error-free 640 Gbit/s demultiplexing using a chalcogenide planar waveguide chip. , 2008, , .		4
104	Surface Roughness in Plasma-Etched \$hbox{As}_{f 2}hbox{S}_{f 3}\$ Films: Its Origin and Improvement. IEEE Nanotechnology Magazine, 2008, 7, 285-290.	1.1	7
105	Momentum transfer in a standing optical vortex. , 2008, , .		0
106	Dry etching characteristics of amorphous As2S3 film in CHF3 plasma. Journal of Applied Physics, 2008, 104, .	1.1	23
107	Investigation of the structure of GexAsySe1â^'xâ^'y glasses by x-ray photoelectron spectroscopy. Journal of Applied Physics, 2008, 103, 083537.	1.1	12
108	Birth and decay of coherent optical phonons in femtosecond-laser-excited bismuth. Physical Review B, 2008, 78, .	1.1	39

#	Article	IF	Citations
109	Small Atomic Displacements Recorded in Bismuth by the Optical Reflectivity of Femtosecond Laser-Pulse Excitations. Physical Review Letters, 2008, 100, 027404.	2.9	79
110	MULTI-MEGABAR PRESSURE AND SUPER-DENSE MATERIALS CREATED BY LASER-INDUCED MICRO-EXPLOSION INSIDE OF TRANSPARENT SOLID. , 2008, , .		0
111	Cleaning of paint with high repetition rate laser. , 2008, , 49-53.		0
112	Novel Shadow Mask Structure for Sampled Bragg Gratings in Chalcogenide (As <inf>2</inf> S <inf>3</inf>) Planar Waveguides., 2007,,.		0
113	Cluster formation through the action of a single picosecond laser pulse. Journal of Physics: Conference Series, 2007, 59, 762-768.	0.3	13
114	Positive Magnetisation in Carbon Nanoclusters Produced by High-Repetition-Rate Laser Ablation. Materials Research Society Symposia Proceedings, 2007, 998, 1.	0.1	0
115	Optimization of the Structural and Optical Properties of Ge-As-Se Glasses. , 2007, , .		0
116	Fabrication of low loss Ge33As12Se55 (AMTIR-1) planar waveguides. Applied Physics Letters, 2007, 91, 011115.	1.5	36
117	High Quality Comb Filters in Chalcogenide Rib Waveguides. , 2007, , .		0
118	Photosensitive post-tuning of chalcogenide photonic crystal waveguides., 2007,,.		0
119	Characteristics of Ge-As-Se chalcogenide glasses and films. , 2007, , .		0
120	Fabrication of high-Q chalcogenide photonic crystal resonators by e-beam lithography. Applied Physics Letters, 2007, 90, 071102.	1.5	39
121	Fabrication Process Development for As <inf>2</inf> S <inf>3</inf> Planar Waveguides using Standard Semiconductor Processing., 2007, , .		0
122	Reversible photomodification of LiNbO 3 and LiTaO 3 by femtosecond laser pulses. , 2007, , .		0
123	Femtosecond Laser Structuring of As2S3 Glass for Erasable and Permanent Optical Memory. Materials Research Society Symposia Proceedings, 2007, 997, 1.	0.1	0
124	Excitation of Coherent Phonons in Crystalline Bi: Theory for Driving Atomic Vibrations by Femtosecond Pulses. Materials Research Society Symposia Proceedings, 2007, 1016, 1.	0.1	0
125	Laser-matter interaction in the bulk of transparent dielectrics: Confined micro-explosion. Journal of Physics: Conference Series, 2007, 59, 5-10.	0.3	4
126	Influence of TiO2 on Second Harmonic Generation in Disperse Red -1 doped Organic-Inorganic Hybrid Thin Films. Materials Research Society Symposia Proceedings, 2007, 1015, 1.	0.1	0

#	Article	IF	Citations
127	Photosensitive post tuning of chalcogenide photonic crystal waveguides. Optics Express, 2007, 15, 1277.	1.7	81
128	Integrated shadow mask for sampled Bragg gratings in chalcogenide (As_2S_3) planar waveguides. Optics Express, 2007, 15, 7708.	1.7	5
129	Long, low loss etched As_2S_3 chalcogenide waveguides for all-optical signal regeneration. Optics Express, 2007, 15, 14414.	1.7	196
130	Thin film deposition of Ge33As12Se55 by pulsed laser deposition and thermal evaporation: Comparison of properties. Journal of Non-Crystalline Solids, 2007, 353, 947-949.	1.5	28
131	Structural relaxation and optical properties in amorphous Ge33As12Se55 films. Journal of Non-Crystalline Solids, 2007, 353, 950-952.	1.5	37
132	Nano-phase separation of arsenic tri-sulphide (As2S3) film and its effect on plasma etching. Journal of Non-Crystalline Solids, 2007, 353, 953-955.	1.5	15
133	Nanoscale phase separation in ultrafast pulsed laser deposited arsenic trisulfide (As2S3) films and its effect on plasma etching. Journal of Applied Physics, 2007, 102, .	1.1	22
134	Rebonding of Se to As and Ge in Ge33As12Se55 films upon thermal annealing: Evidence from x-ray photoelectron spectra investigations. Journal of Applied Physics, 2007, 101, 113517.	1.1	42
135	Coherent phonons imprinted into reflectivity oscillations of laser-excited Bi through electron-phonon coupling. , 2007, , .		0
136	Fabrication of As <inf>2</inf> S <inf>3</inf> Planar Waveguides with Very Low Propagation Loss. Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 2007, , .	0.0	0
137	High-temperature formation of concentric fullerene-like structures within foam-like carbon: Experiment and molecular dynamics simulation. Physical Review B, 2007, 75, .	1.1	54
138	Carbon nanofoam as a potential hydrogen storage material. Physica Status Solidi (B): Basic Research, 2007, 244, 4308-4310.	0.7	15
139	Physical Aging of Arsenic Trisulfide Thick Films and Bulk Materials. Journal of the American Ceramic Society, 2007, 90, 1269-1271.	1.9	9
140	Thermal characterization of Ge–As–Se glasses by differential scanning calorimetry. Journal of Materials Science: Materials in Electronics, 2007, 18, 419-422.	1.1	29
141	2D Nonlinear Photonic Crystals Nanocavities in Chalcogenide for All-optical Processing. Progress in Electromagnetics Research Symposium: [proceedings] Progress in Electromagnetics Research Symposium, 2007, 3, 308-310.	0.4	0
142	Wavelength dispersion of Verdet constant in Ge <inf>22</inf> As <inf>20</inf> Se <inf>58</inf> , Ge <inf>33</inf> As <inf>12</inf> Se <inf>55</inf> and As <inf>2</inf> S <inf>3</inf> chalcogenide thin films. , 2006, , .		0
143	Origin of magnetic moments in carbon nanofoam. Physical Review B, 2006, 74, .	1.1	62
144	Optical characterization of Ge-As-Se glasses containing high content of germanium. , 2006, , .		1

#	Article	IF	CITATIONS
145	Expansion-Limited Nanocluster Growth in a Plume Formed by MHz-Pulse-Rate Laser Ablation., 2006,,.		O
146	$Low\ loss\ etched\ Ge\< inf\> 33\< inf\> As\< inf\> 12\< linf\> Se\< inf\> 55\< linf\> chalcogenide\ waveguides.\ , 2006,\ , .$		0
147	Ultrafast Laser Ablation and Film Deposition. , 2006, , 99-129.		2
148	Magnetic ordering and spin-glass behaviour of carbon nanoclusters. , 2006, , .		0
149	Annealing induced phase transformations in amorphous As2S3 films. Journal of Applied Physics, 2006, 100, 063524.	1.1	51
150	Photo-structuring of As2S3glass by femtosecond irradiation. Optics Express, 2006, 14, 7751.	1.7	37
151	Compact high-power optical source for resonant infrared pulsed laser ablation and deposition of polymer materials. Optics Express, 2006, 14, 12302.	1.7	37
152	Reflectivity oscillations of fs-laser excited Bismuth: excitation of coherent phonons., 2006, 6261, 198.		1
153	Expansion-limited nanocluster growth in a plume formed by MHz-pulse-rate laser ablation. , 2006, , .		1
154	Ultrafast lasers for conservation of heritage artefacts. AICCM Bulletin, 2006, 30, 17-26.	0.1	2
155	Effects of non-equilibrium energy distribution of surface atoms on the onset and rate of laser ablation: experiments and theory., 2006, 6261, 560.		2
156	Non-equilibrium transformations of solids induced by femtosecond laser: coherent displacement of atoms., 2006, 6261, 283.		0
157	Laser-Matter Interaction Confined Inside the Bulk of a Transparent Solid. , 2006, , 5-36.		2
158	13C NMR and EPR of carbon nanofoam. Physica Status Solidi (B): Basic Research, 2006, 243, 3069-3072.	0.7	22
159	Positive magnetisation in carbon nanostructures. Current Applied Physics, 2006, 6, 549-552.	1.1	3
160	Nano-scale phase separation in As $<$ inf $>$ 2 $<$ /inf $>$ S $<$ inf $>$ 3 $<$ /inf $>$ film and its effect on scattering loss in plasma etched waveguides. , 2006, , .		0
161	Non-equilibrium Transformations of Solids Induced by Femtosecond Laser Pulses. AIP Conference Proceedings, 2006, , .	0.3	0
162	Advanced processing methods for As <inf>2</inf> S <inf>3</inf> Waveguide Fabrication. , 2006, , .		1

#	Article	IF	Citations
163	Chalcogenide Glasses for All-optical Processing. , 2006, , .		O
164	Fabrication and Optical Characterization of Ge33As12Se55 (AMTIR-1) Thin Film Waveguides. , 2006, , .		1
165	Wavelength dispersion of Verdet constants in chalcogenide glasses for magneto-optical waveguide devices. Optics Communications, 2005, 252, 39-45.	1.0	72
166	Ablation of metals with picosecond laser pulses: Evidence of long-lived nonequilibrium conditions at the surface. Physical Review B, 2005, 71, .	1.1	69
167	Dry-etch of As2S3 thin films for optical waveguide fabrication. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2005, 23, 1626-1632.	0.9	39
168	Ablation of metals with picosecond laser pulses: Evidence of long-lived non-equilibrium surface states. Laser and Particle Beams, 2005, 23, 167-176.	0.4	29
169	Large phase shifts in As_2S_3 waveguides for all-optical processing devices. Optics Letters, 2005, 30, 2605.	1.7	21
170	Table-top 50-W laser system for ultra-fast laser ablation. Applied Physics A: Materials Science and Processing, 2004, 79, 1051-1055.	1.1	63
171	Gallium transformation under femtosecond laser excitation: Phase coexistence and incomplete melting. Physical Review B, 2004, 70, .	1.1	34
172	Unconventional magnetism in all-carbon nanofoam. Physical Review B, 2004, 70, .	1.1	235
173	<title>Three-dimensional recording and structuring of chalcogenide glasses by femtosecond pulses</title> ., 2004, , .		9
174	Control over a phase state of the laser plume ablated by femtosecond laser: Spatial pulse shaping. Journal of Applied Physics, 2004, 95, 2250-2257.	1.1	22
175	Fabrication and characterization of low loss rib chalcogenide waveguides made by dry etching. Optics Express, 2004, 12, 5140.	1.7	161
176	Subpicosecond and picosecond laser ablation of dental enamel: comparative analysis., 2004, 5340, 76.		5
177	Applications of high-power slow mode-locked lasers for ablation and nonlinear optics. , 2004, , .		3
178	Recording and reading of three-dimensional optical memory in glasses. Applied Physics B: Lasers and Optics, 2003, 77, 361-368.	1.1	74
179	Silicon surface processing techniques for micro-systems fabrication. Thin Solid Films, 2003, 438-439, 445-451.	0.8	16
180	Boron nitride nanostructures formed by ultra-high-repetition rate laser ablation. Diamond and Related Materials, 2003, 12, 1269-1274.	1.8	70

#	Article	IF	CITATIONS
181	Passive mode locking of a Nd: YVO _4 laser with an extra-long optical resonator. Optics Letters, 2003, 28, 1275.	1.7	50
182	Precision ablation of dental enamel using a subpicosecond pulsed laser. Australian Dental Journal, 2003, 48, 233-239.	0.6	66
183	Ablation of dental enamel using subpicosecond pulsed lasers. International Congress Series, 2003, 1248, 117-119.	0.2	5
184	Generation of third-harmonic radiation of IR picosecond lasers for ultrafast pulsed laser deposition. , 2003, , .		0
185	Transient dielectric function of Gallium undergoing order-disorder phase transition induced by femtosecond laser pulses. , 2003, , .		0
186	Subpicosecond laser ablation of dental enamel. Journal of Applied Physics, 2002, 92, 2153-2158.	1.1	68
187	Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics. Physics of Plasmas, 2002, 9, 949-957.	0.7	711
188	Dynamics of light-induced reflectivity switching in gallium films deposited on silica by pulsed laser ablation. Optics Letters, 2001, 26, 441.	1.7	26
189	Dynamics of light-induced reflectivity switching in gallium films deposited on silica by pulsed laser ablation:â€ferrata. Optics Letters, 2001, 26, 852.	1.7	2
190	Light-induced metallization in laser-deposited gallium films. Journal of the Optical Society of America B: Optical Physics, 2001, 18, 331.	0.9	28
191	Mechanisms of ablation-rate decrease in multiple-pulse laser ablation. Applied Physics A: Materials Science and Processing, 2001, 73, 143-149.	1.1	31
192	Acceleration of carbon ions in a skin-layer interaction regime in laser ablation experiments. , 2000, , .		0
193	Formation of diamond-like carbon films and carbon foam by ultrafast laser ablation. Laser and Particle Beams, 2000, 18, 245-254.	0.4	14
194	Formation of cluster-assembled carbon nano-foam by high-repetition-rate laser ablation. Applied Physics A: Materials Science and Processing, 2000, 70, 135-144.	1.1	125
195	Single-walled carbon nanotubes formation with a continuous CO 2 -laser: experiments and theory. Applied Physics A: Materials Science and Processing, 2000, 70, 161-168.	1.1	21
196	Shock waves in basalt rock generated with high-powered lasers in a confined geometry. Journal of Applied Physics, 1999, 86, 5461-5466.	1.1	22
197	Structural analysis of a carbon foam formed by high pulse-rate laser ablation. Applied Physics A: Materials Science and Processing, 1999, 69, S755-S758.	1.1	85
198	Ultrafast ablation with high-pulse-rate lasers. Part I: Theoretical considerations. Journal of Applied Physics, 1999, 85, 4213-4221.	1.1	184

#	Article	IF	Citations
199	Laser ablation of carbon at the threshold of plasma formation. Applied Physics A: Materials Science and Processing, 1999, 69, S121-S127.	1.1	28
200	Ultrafast ablation with high-pulse-rate lasers. Part II: Experiments on laser deposition of amorphous carbon films. Journal of Applied Physics, 1999, 85, 4222-4230.	1.1	114
201	<title>Ultrafast ablation with high-pulse-repetition-rate lasers: I. Theoretical considerations</title> ., 1998, 3343, 847.		1
202	<title>Ultrafast ablation with high-pulse-rate Nd:YAG lasers: II. Experiments on deposition of diamondlike carbon films $<$ /title>. , 1998, , .		3
203	Evidence of magnetic fields imprinted in ferromagnetic targets by the spontaneous magnetic field of a laser-produced plasma demonstrated by after-pulse pulsations of $\hat{Kl}\pm$ emission. Physics of Plasmas, 1997, 4, 3676-3683.	0.7	0
204	Beam smoothing and temporal effects:Optimized preparation of laser beams for direct-drive inertial confinement fusion. Laser and Particle Beams, 1997, 15, 277-295.	0.4	4
205	X-ray focusing using lobster-eye optics: a comparison of theory with experiment. , 1995, , .		4
206	Oneâ€dimensional focusing of synchrotron xâ€ray radiation with curved arrays of reflectors. Review of Scientific Instruments, 1995, 66, 2197-2199.	0.6	0
207	<title>Aberrations of images formed by curved capillary arrays and crystals</title> ., 1994, 2011, 161.		O
208	<title>Focusing of synchrotron x-ray radiation with cylindrically curved arrays of reflectors</title> ., 1994, 2279, 305.		0
209	Pulsation of harmonic andKα emission from laser-produced plasmas. Physical Review E, 1993, 47, 2778-2784.	0.8	6
210	<title>Capillary x-ray optics</title> ., 1993, 1741, 40.		2
211	Preheating in the laser-driven compression of thermonuclear targets. Physical Review A, 1991, 43, 3024-3034.	1.0	3
212	Intensity measurements of a quasi-monochromatic X-ray beam formed by a spherically bent crystal. Optics Communications, 1990, 77, 163-166.	1.0	16
213	Measurement of X-Ray Spectral Line Wavelengths by Using Two Bragg Reflections. Journal of X-Ray Science and Technology, 1990, 2, 149-159.	0.7	3
214	The investigation of heating and compression of high-aspect ratio targets with †Delfin-1â€. Laser and Particle Beams, 1984, 2, 103-119.	0.4	7
215	Measurement of the dynamics of the compression of high aspect-ratio shell targets in the "Delfin-1― installation. Physics Letters, Section A: General, Atomic and Solid State Physics, 1984, 105, 410-414.	0.9	3