Marta Miranda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7118529/publications.pdf

Version: 2024-02-01

95 papers

2,310 citations

218592 26 h-index 254106 43 g-index

95 all docs 95
docs citations

95 times ranked 2222 citing authors

#	Article	IF	CITATIONS
1	Interactions between toxic (As, Cd, Hg and Pb) and nutritional essential (Ca, Co, Cr, Cu, Fe, Mn, Mo, Ni,) Tj ETQq1	1.878431	4 rgBT /Cive
2	Arsenic, cadmium, lead, copper and zinc in cattle from Galicia, NW Spain. Science of the Total Environment, 2000, 246, 237-248.	3.9	111
3	Organic acids as a substitute for monensin in diets for beef cattle. Animal Feed Science and Technology, 2004, 115, 101-116.	1.1	98
4	Effects of moderate pollution on toxic and trace metal levels in calves from a polluted area of northern Spain. Environment International, 2005, 31, 543-548.	4.8	92
5	Essential trace and toxic element concentrations in organic and conventional milk in NW Spain. Food and Chemical Toxicology, 2013, 55, 513-518.	1.8	91
6	Interactions Between Toxic and Essential Trace Metals in Cattle from a Region with Low Levels of Pollution. Archives of Environmental Contamination and Toxicology, 2002, 42, 165-172.	2.1	73
7	Toxic and essential metals in liver, kidney and muscle of pigs at slaughter in Galicia, north-west Spain. Food Additives and Contaminants, 2007, 24, 943-954.	2.0	70
8	Metal accumulation in cattle raised in a serpentine-soil area: Relationship between metal concentrations in soil, forage and animal tissues. Journal of Trace Elements in Medicine and Biology, 2009, 23, 231-238.	1.5	70
9	Mineral analysis in rabbit meat from Galicia (NW Spain). Meat Science, 2006, 73, 635-639.	2.7	65
10	Influence of copper status on the accumulation of toxic and essential metals in cattle. Environment International, 2006, 32, 901-906.	4.8	64
11	Toxic and trace elements in liver, kidney and meat from cattle slaughtered in Galicia (NW Spain). Food Additives and Contaminants, 2000, 17, 447-457.	2.0	59
12	Cattle as Biomonitors of Soil Arsenic, Copper, and Zinc Concentrations in Galicia (NW Spain). Archives of Environmental Contamination and Toxicology, 2002, 43, 103-108.	2.1	59
13	Consumers' perception of and attitudes towards organic food in Galicia (Northern Spain). International Journal of Consumer Studies, 2020, 44, 206-219.	7.2	53
14	Chemometric authentication of the organic status of milk on the basis of trace element content. Food Chemistry, 2018, 240, 686-693.	4.2	48
15	The use of seaweed from the Galician coast as a mineral supplement in organic dairy cattle. Animal, 2014, 8, 580-586.	1.3	47
16	The Effect of Pig Farming on Copper and Zinc Accumulation in Cattle in Galicia (North-Western Spain). Veterinary Journal, 2000, 160, 259-266.	0.6	45
17	Assessment of Some Blood Parameters as Potential Markers of Hepatic Copper Accumulation in Cattle. Journal of Veterinary Diagnostic Investigation, 2006, 18, 71-75.	0.5	42
18	Worldwide Traceability of Antibiotic Residues from Livestock in Wastewater and Soil: A Systematic Review. Animals, 2022, 12, 60.	1.0	41

#	Article	IF	Citations
19	Use of dogs as indicators of metal exposure in rural and urban habitats in NW Spain. Science of the Total Environment, 2007, 372, 668-675.	3.9	40
20	The role of metallothionein and zinc in hepatic copper accumulation in cattle. Veterinary Journal, 2005, 169, 262-267.	0.6	34
21	Copper Supplementation, A Challenge in Cattle. Animals, 2020, 10, 1890.	1.0	33
22	Values of plasma lipid hydroperoxides and total antioxidant status in healthy dairy cows: preliminary observations. Archives Animal Breeding, 2003, 46, 227-233.	0.5	33
23	Mercury concentrations in cattle from NW Spain. Science of the Total Environment, 2003, 302, 93-100.	3.9	32
24	Factors affecting trace element status in calves in NW Spain. Livestock Science, 2009, 123, 198-208.	0.6	32
25	Seasonal Variation of the Proximate Composition, Mineral Content, Fatty Acid Profiles and Other Phytochemical Constituents of Selected Brown Macroalgae. Marine Drugs, 2021, 19, 204.	2.2	32
26	Effect of type of muscle and Cu supplementation on trace element concentrations in cattle meat. Food and Chemical Toxicology, 2011, 49, 1443-1449.	1.8	31
27	Contribution of cattle products to dietary intake of trace and toxic elements in Galicia, Spain. Food Additives and Contaminants, 2002, 19, 533-541.	2.0	26
28	Essential and toxic trace element concentrations in different commercial veal cuts in Spain. Meat Science, 2016, 121, 47-52.	2.7	25
29	Dietary Zinc Supplementation to Prevent Chronic Copper Poisoning in Sheep. Animals, 2018, 8, 227.	1.0	25
30	Breeding for organic dairy farming: what types of cows are needed?. Journal of Dairy Research, 2019, 86, 3-12.	0.7	25
31	Toxic and essential trace element concentrations in fish species in the Lower Amazon, Brazil. Science of the Total Environment, 2020, 732, 138983.	3.9	25
32	Large-scale spatial variation in mercury concentrations in cattle in NW Spain. Environmental Pollution, 2003, 125, 173-181.	3.7	24
33	Trace mineral status and toxic metal accumulation in extensive and intensive pigs in NW Spain. Livestock Science, 2012, 146, 47-53.	0.6	24
34	Identifying sources of metal exposure in organic and conventional dairy farming. Chemosphere, 2017, 185, 1048-1055.	4.2	23
35	Evaluation of trace element status of organic dairy cattle. Animal, 2018, 12, 1296-1305.	1.3	22
36	Non-essential and essential trace element concentrations in meat from cattle reared under organic, intensive or conventional production systems. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2010, 27, 36-42.	1.1	21

#	Article	IF	Citations
37	Long-term Follow-up of Blood Lead Levels and Haematological and Biochemical Parameters in Heifers that Survived an Accidental Lead Poisoning Episode. Transboundary and Emerging Diseases, 2006, 53, 305-310.	0.6	20
38	Toxic and trace metal concentrations in liver and kidney of dogs. Biological Trace Element Research, 2007, 116, 185-202.	1.9	20
39	Trace Element Concentrations in Beef Cattle Related to the Breed Aptitude. Biological Trace Element Research, 2018, 186, 135-142.	1.9	20
40	Evaluation of the need of copper supplementation in intensively reared beef cattle. Livestock Science, 2011, 137, 273-277.	0.6	18
41	Evaluation of organic, conventional and intensive beef farm systems: health, management and animal production. Animal, 2012, 6, 1503-1511.	1.3	18
42	Intracellular distribution of copper and zinc in the liver of copper-exposed cattle from northwest Spain. Veterinary Journal, 2005, 170, 332-338.	0.6	17
43	Fish tissues for biomonitoring toxic and essential trace elements in the Lower Amazon. Environmental Pollution, 2021, 283, 117024.	3.7	17
44	Validation of a simple sample preparation method for multielement analysis of bovine serum. PLoS ONE, 2019, 14, e0211859.	1.1	16
45	Copper, Zinc, Iron, and Manganese Accumulation in Cattle from Asturias (Northern Spain). Biological Trace Element Research, 2006, 109, 135-144.	1.9	15
46	Variations in liver and blood copper concentrations in young beef cattle raised in north-west Spain: associations with breed, sex, age and season. Animal Science, 2006, 82, 253-258.	1.3	15
47	Influence of breed on blood and tissue copper status in growing and finishing steers fed diets supplemented with copper. Archives of Animal Nutrition, 2010, 64, 98-110.	0.9	15
48	Histochemistry evaluation of the oxidative stress and the antioxidant status in Cu-supplemented cattle. Animal, 2012, 6, 1435-1443.	1.3	15
49	Cadmium levels in liver, kidney and meat in calves from Asturias (North Spain). European Food Research and Technology, 2001, 212, 426-430.	1.6	14
50	Hepatic concentrations of copper and other metals in dogs with and without chronic hepatitis. Journal of Small Animal Practice, 2016, 57, 703-709.	0.5	14
51	Determination of Essential and Toxic Elements in Cattle Blood: Serum vs Plasma. Animals, 2019, 9, 465.	1.0	14
52	Importancia del estrés oxidativo en ganado vacuno: en relación con el estado fisiológico (preñez y) Tj ETC	Qq0 <u>8.9</u> rgE	BT /Qyerlock 10
53	The Interlobular Distribution of Copper in the Liver of Beef Calves on a High-Copper Diet. Journal of Veterinary Diagnostic Investigation, 2010, 22, 277-281.	0.5	13
54	Toxic and essential trace element concentrations in the freshwater shrimp Macrobrachium amazonicum in the Lower Amazon, Brazil. Journal of Food Composition and Analysis, 2020, 86, 103361.	1.9	13

#	Article	IF	CITATIONS
55	Influence of Cu supplementation on toxic and essential trace element status in intensive reared beef cattle. Food and Chemical Toxicology, 2011, 49, 3358-3366.	1.8	12
56	Some toxic elements in liver, kidney and meat from calves slaughtered in Asturias (Northern Spain). European Food Research and Technology, 2003, 216, 284-289.	1.6	11
57	Effect of moderate Cu supplementation on serum metabolites, enzymes and redox state in feedlot calves. Research in Veterinary Science, 2012, 93, 269-274.	0.9	11
58	Morphology and Amplitude Values of the P and T Waves in the Electrocardiograms of Spanishâ€Bred Horses of Different Ages. Transboundary and Emerging Diseases, 1999, 46, 225-230.	0.6	10
59	Use of homeopathy in organic dairy farming in Spain. Homeopathy, 2016, 105, 102-108.	0.5	10
60	Holstein-Friesian milk performance in organic farming in North Spain: Comparison with other systems and breeds. Spanish Journal of Agricultural Research, 2017, 15, e0601.	0.3	10
61	The involvement of metallothionein in hepatic and renal Cd, Cu and Zn accumulation in pigs. Livestock Science, 2012, 150, 152-158.	0.6	9
62	Is lack of antibiotic usage affecting udder health status of organic dairy cattle?. Journal of Dairy Research, 2016, 83, 464-467.	0.7	9
63	Subcellular distribution of hepatic copper in beef cattle receiving high copper supplementation. Journal of Trace Elements in Medicine and Biology, 2017, 42, 111-116.	1.5	9
64	Physicoâ€chemical and sensorial evaluation of new varieties of acerola. British Food Journal, 2009, 111, 387-395.	1.6	8
65	Xanthine Nephrolithiasis in a Galician Blond Beef Calf. Journal of Veterinary Medical Science, 2010, 72, 921-923.	0.3	8
66	Organic cattle products: Authenticating production origin by analysis of serum mineral content. Food Chemistry, 2018, 264, 210-217.	4.2	8
67	Toxic and essential trace element concentrations in different tissues of extensively reared sheep in northern Spain. Journal of Food Composition and Analysis, 2021, 96, 103709.	1.9	8
68	Effects of different strategies of mineral supplementation (marine algae alone or combined with) Tj ETQq0 0 0 rgE 836-843.	BT /Overlo 1.0	ck 10 Tf 50 2 7
69	Importance of breed aptitude (beef or dairy) in determining trace element concentrations in bovine muscles. Meat Science, 2018, 145, 101-106.	2.7	7
70	Serum Concentrations of Essential Trace and Toxic Elements in Healthy and Disease-Affected Dogs. Animals, 2020, 10, 1052.	1.0	7
71	Effect of sex on arsenic, cadmium, lead, copper and zinc accumulation in calves. Veterinary and Human Toxicology, 2000, 42, 265-8.	0.3	7
72	Chemometric characterization of the trace element profile of raw meat from Rubia Gallega x Holstein Friesian calves from an intensive system. Meat Science, 2019, 149, 63-69.	2.7	6

#	Article	IF	CITATIONS
73	Dairy cow nutrition in organic farming systems. Comparison with the conventional system. Animal, 2019, 13, 1084-1093.	1.3	6
74	Zinc supplementation improves growth performance in small ruminants: a systematic review and meta-regression analysis. Animal Production Science, 2021, 61, 621-629.	0.6	6
75	Effect of physiological stage and nutritional management on some serum metabolite concentrations in Assaf ovine breed. Archives Animal Breeding, 1999, 42, 377-386.	0.5	6
76	Relationship between the essential and toxic element concentrations and the proximate composition of different commercial and internal cuts of young beef. European Food Research and Technology, 2017, 243, 1869-1873.	1.6	5
77	Characterization of the Normal Portal and Hepatic Blood Flow of Adult Holstein-Friesian Cows. Animals, 2019, 9, 386.	1.0	5
78	A Different Point of View of Glutathione Peroxidase: its Relationship to the Metabolic Changes Associated with Nutritional Management in Assaf ovine breed. Archives Animal Breeding, 2001, 44, 305-312.	0.5	5
79	Organochlorine Pesticide and Polychlorinated Biphenyl in Calves from North-West Spain. Bulletin of Environmental Contamination and Toxicology, 2008, 81, 583-587.	1.3	4
80	Organic or conventional dairy farming in northern Spain: Impacts on cow reproductive performance. Reproduction in Domestic Animals, 2019, 54, 902-911.	0.6	4
81	Serum metabolite concentrations and enzyme activities in finishing bull calves fed different types of high-grain diets. Archives Animal Breeding, 2011, 54, 137-146.	0.5	4
82	On a type of evolution of self-referred and hereditary phenomena. Aequationes Mathematicae, 2006, 71, 253-268.	0.4	3
83	Variation in trace element content between liver lobes in cattle. How important is the sampling site?. Journal of Trace Elements in Medicine and Biology, 2019, 52, 53-57.	1.5	3
84	Trace Element Levels in Serum Are Potentially Valuable Diagnostic Markers in Dogs. Animals, 2020, 10, 2316.	1.0	3
85	Helminth infections on organic dairy farms in Spain. Veterinary Parasitology, 2017, 243, 115-118.	0.7	2
86	Iron loading and secondary multi-trace element deficiency in a dairy herd fed silage grass grown on land fertilized with sewage sludge. Environmental Science and Pollution Research, 2019, 26, 36978-36984.	2.7	2
87	Breed performance in organic dairy farming in Northern Spain. Reproduction in Domestic Animals, 2020, 55, 93-104.	0.6	2
88	Influence of Haemolysis on the Mineral Profile of Cattle Serum. Animals, 2021, 11, 3336.	1.0	2
89	Analysis of Acid-Base Balance by Application of Fencl's Equations in Sheep. Journal of Applied Animal Research, 1998, 14, 127-135.	0.4	1
90	Ultrasonography of Normal Adrenal Glands in Adult Holstein–Friesian Cows: A Pilot Study. Animals, 2020, 10, 1171.	1.0	1

#	Article	IF	CITATIONS
91	Toxic and trace metal concentrations in liver and kidney of dogs. Biological Trace Element Research, 2007, 116, 185-202.	1.9	1
92	Seasonal variation of glutathione peroxidase, CK and AST in sheep in a low-selenium region. Journal of Animal and Feed Sciences, 1997, 6, 343-351.	0.4	1
93	Short communication: The main factors affecting somatic cell count in organic dairy farming. Spanish Journal of Agricultural Research, 2018, 15, e06SC02.	0.3	1
94	Zinc supplementation in ruminant diets: efficacy, safety, and formulation. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , .	0.6	0
95	Transabdominal Renal Doppler Ultrasound in Healthy Adult Holstein-Friesian Cows: A Pilot Study. Animals, 2021, 11, 63.	1.0	0