
Guendalina Zuccari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7118142/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mini-Tablets: A Valid Strategy to Combine Efficacy and Safety in Pediatrics. Pharmaceuticals, 2022, 15, 108.	3.8	17
2	Successful Dendrimer and Liposome-Based Strategies to Solubilize an Antiproliferative Pyrazole Otherwise Not Clinically Applicable. Nanomaterials, 2022, 12, 233.	4.1	16
3	Recommendations to Synthetize Old and New β-Lactamases Inhibitors: A Review to Encourage Further Production. Pharmaceuticals, 2022, 15, 384.	3.8	14
4	Synthesis and Characterization of Pyrazole-Enriched Cationic Nanoparticles as New Promising Antibacterial Agent by Mutual Cooperation. Nanomaterials, 2022, 12, 1215.	4.1	9
5	Pyrazole-Based Water-Soluble Dendrimer Nanoparticles as a Potential New Agent against Staphylococci. Biomedicines, 2022, 10, 17.	3.2	12
6	Potent and Broad-Spectrum Bactericidal Activity of a Nanotechnologically Manipulated Novel Pyrazole. Biomedicines, 2022, 10, 907.	3.2	5
7	One-Step, Low-Cost, Operator-Friendly, and Scalable Procedure to Synthetize Highly Pure N-(4-ethoxyphenyl)-retinamide in Quantitative Yield without Purification Work-Up. Molecules, 2022, 27, 3632.	3.8	0
8	4-Hydroxybenzoic Acid as an Antiviral Product from Alkaline Autoxidation of Catechinic Acid: A Fact to Be Reviewed. Plants, 2022, 11, 1822.	3.5	2
9	Biodegradable and Compostable Shopping Bags under Investigation by FTIR Spectroscopy. Applied Sciences (Switzerland), 2021, 11, 621.	2.5	9
10	D-α-Tocopherol-Based Micelles for Successful Encapsulation of Retinoic Acid. Pharmaceuticals, 2021, 14, 212.	3.8	25
11	Broad-Spectrum Bactericidal Activity of a Synthetic Random Copolymer Based on 2-Methoxy-6-(4-Vinylbenzyloxy)-Benzylammonium Hydrochloride. International Journal of Molecular Sciences, 2021, 22, 5021.	4.1	13
12	Anti-Vascular Cell Adhesion Molecule-1 Nanosystems: A Promising Strategy Against Inflammatory Based Diseases. Journal of Nanoscience and Nanotechnology, 2021, 21, 2793-2807.	0.9	8
13	Increased Water-Solubility and Maintained Antioxidant Power of Resveratrol by Its Encapsulation in Vitamin E TPGS Micelles: A Potential Nutritional Supplement for Chronic Liver Disease. Pharmaceutics, 2021, 13, 1128.	4.5	24
14	Two Novel PET Radiopharmaceuticals for Endothelial Vascular Cell Adhesion Molecule-1 (VCAM-1) Targeting. Pharmaceutics, 2021, 13, 1025.	4.5	18
15	Nanotechnological Manipulation of Nutraceuticals and Phytochemicals for Healthy Purposes: Established Advantages vs. Still Undefined Risks. Polymers, 2021, 13, 2262.	4.5	7
16	Bactericidal Activity of a Self-Biodegradable Lysine-Containing Dendrimer against Clinical Isolates of Acinetobacter Genus. International Journal of Molecular Sciences, 2021, 22, 7274.	4.1	10
17	Considerable Improvement of Ursolic Acid Water Solubility by Its Encapsulation in Dendrimer Nanoparticles: Design, Synthesis and Physicochemical Characterization. Nanomaterials, 2021, 11, 2196.	4.1	20
18	Retinoids in Fungal Infections: From Bench to Bedside. Pharmaceuticals, 2021, 14, 962.	3.8	25

GUENDALINA ZUCCARI

#	Article	IF	CITATIONS
19	Bactericidal Activity of Non-Cytotoxic Cationic Nanoparticles against Clinically and Environmentally Relevant Pseudomonas spp. Isolates. Pharmaceutics, 2021, 13, 1411.	4.5	16
20	Preparation and Physicochemical Characterization of Water-Soluble Pyrazole-Based Nanoparticles by Dendrimer Encapsulation of an Insoluble Bioactive Pyrazole Derivative. Nanomaterials, 2021, 11, 2662.	4.1	17
21	Efficacy of Ursolic Acid-Enriched Water-Soluble and Not Cytotoxic Nanoparticles against Enterococci. Pharmaceutics, 2021, 13, 1976.	4.5	8
22	Peptide-based nanosystems for vascular cell adhesion molecule-1 targeting: a real opportunity for therapeutic and diagnostic agents in inflammation associated disorders. Journal of Drug Delivery Science and Technology, 2020, 55, 101461.	3.0	18
23	Nanotechnology application in food packaging: A plethora of opportunities versus pending risks assessment and public concerns. Food Research International, 2020, 137, 109664.	6.2	85
24	Oxidative Stress, Antioxidant Capabilities, and Bioavailability: Ellagic Acid or Urolithins?. Antioxidants, 2020, 9, 707.	5.1	59
25	Formulation Strategies to Improve Oral Bioavailability of Ellagic Acid. Applied Sciences (Switzerland), 2020, 10, 3353.	2.5	28
26	Dendrimer Nanodevices and Gallic Acid as Novel Strategies to Fight Chemoresistance in Neuroblastoma Cells. Nanomaterials, 2020, 10, 1243.	4.1	44
27	Cytotoxic Activity of Dendrimer Nanoparticles and Dendrimer Drugs Formulations on Human Neuroblastoma Cells: Our Recent Update. Materials Proceedings, 2020, 4, .	0.2	Ο
28	Preparation of ellagic acid micro and nano formulations with amazingly increased water solubility by its entrapment in pectin or non-PAMAM dendrimers suitable for clinical applications. New Journal of Chemistry, 2019, 43, 2438-2448.	2.8	34
29	A new microdispersed albumin derivative potentially useful for radio-guided surgery of occult breast cancer lesions. Scientific Reports, 2019, 9, 5623.	3.3	2
30	Development of an Injectable Slow-Release Metformin Formulation and Evaluation of Its Potential Antitumor Effects. Scientific Reports, 2018, 8, 3929.	3.3	24
31	Development and characterization of a mucoadhesive sublingual formulation for pain control: extemporaneous oxycodone films in personalized therapy. Drug Development and Industrial Pharmacy, 2017, 43, 917-924.	2.0	8
32	Tumor vascular targeted liposomal-bortezomib minimizes side effects and increases therapeutic activity in human neuroblastoma. Journal of Controlled Release, 2015, 211, 44-52.	9.9	49
33	Preparation, characterization and <i>in vitro</i> evaluation of sterically stabilized liposome containing a naphthalenediimide derivative as anticancer agent. Drug Delivery, 2015, 22, 590-597.	5.7	11
34	Enhanced anti-tumor and anti-angiogenic efficacy of a novel liposomal fenretinide on human neuroblastoma. Journal of Controlled Release, 2013, 170, 445-451.	9.9	41
35	Structure–activity relationships of novel substituted naphthalene diimides as anticancer agents. European Journal of Medicinal Chemistry, 2012, 57, 417-428.	5.5	44
36	Enhanced anti-neuroblastoma activity of a fenretinide complexed form after intravenous administration. Journal of Pharmacy and Pharmacology, 2012, 64, 228-236.	2.4	5

GUENDALINA ZUCCARI

#	Article	IF	CITATIONS
37	Novel micelles based on amphiphilic branched PEG as carriers for fenretinide. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 880-890.	3.3	20
38	Micellar complexes of all-trans retinoic acid with polyvinylalcohol-nicotinoyl esters as new parenteral formulations in neuroblastoma. Drug Delivery, 2009, 16, 189-195.	5.7	11
39	Improvement of aqueous solubility of fenretinide and other hydrophobic anti-tumor drugs by complexation with amphiphilic dextrins. Drug Delivery, 2009, 16, 389-398.	5.7	15
40	Enhancement of Oleyl Alcohol Anti Tumor Activity through Complexation in Polyvinylalcohol Amphiphilic Derivatives. Drug Delivery, 2007, 14, 209-217.	5.7	6
41	Fenretinide-polyvinylalcohol Conjugates:  New Systems Allowing Fenretinide Intravenous Administration. Biomacromolecules, 2007, 8, 3258-3262.	5.4	16
42	Sodium Ascorbate induces apoptosis in neuroblastoma cell lines by interfering with iron uptake. Molecular Cancer, 2007, 6, 55.	19.2	53
43	Amphiphilic Poly(vinyl alcohol) Derivatives as Complexing Agents for Fenretinide. Biomacromolecules, 2006, 7, 3157-3163.	5.4	9
44	In vitro and In vivo Antitumor Activity of the Novel Derivatized Polyvinyl Alcohol-Based Polymer P10(4). Clinical Cancer Research, 2006, 12, 3485-3493.	7.0	13
45	Modified polyvinylalcohol for encapsulation of all-trans-retinoic acid in polymeric micelles. Journal of Controlled Release, 2005, 103, 369-380.	9.9	55
46	Preparation and Evaluation of Polyvinyl alcohol-co-oleylvinyl ether Derivatives as Tumor-Specific Cytotoxic Systems. Biomacromolecules, 2005, 6, 2875-2880.	5.4	5
47	Poly(Vinylalcohol-Co-Vinyloleate) for the Preparation of Micelles Enhancing Retinyl Palmitate Transcutaneous Permeation. Drug Delivery, 2002, 9, 147-152.	5.7	24
48	Polyvinylalcohol substituted with triethyleneglycolmonoethylether as a new material for preparation of solid dispersions of hydrophobic drugs. European Journal of Pharmaceutics and Biopharmaceutics, 2002, 54, 229-233.	4.3	15
49	Influence of different chitosan salts on the release of sodium diclofenac in colon-specific delivery. International Journal of Pharmaceutics, 2002, 238, 51-59.	5.2	88
50	Fatty acid substituted polyvinyl alcohol as a supporting material for microsphere preparation. Journal of Microencapsulation, 2001, 18, 77-87.	2.8	7