Chaohong Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7117562/publications.pdf

Version: 2024-02-01

17	722	687363	940533
papers	citations	h-index	g-index
17	17	17	1308
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Bright Stretchable White Alternatingâ€Current Electroluminescent Devices Enabled by Photoluminescent Phosphor. Advanced Materials Technologies, 2022, 7, .	5.8	4
2	Asymmetrically Enhanced Coplanarâ€Electrode Electroluminescence for Information Encryption and Ultrahighly StretchableÂDisplays. Advanced Materials, 2022, 34, .	21.0	21
3	Highâ€Throughput Screening of Selfâ€Healable Polysulfobetaine Hydrogels and their Applications in Flexible Electronics. Advanced Functional Materials, 2021, 31, 2100489.	14.9	26
4	Ternary All-Polymer Solar Cells With 8.5% Power Conversion Efficiency and Excellent Thermal Stability. Frontiers in Chemistry, 2020, 8, 302.	3.6	19
5	Comprehensive Investigation and Analysis of Bulk-Heterojunction Microstructure of High-Performance PCE11:PCBM Solar Cells. ACS Applied Materials & Samp; Interfaces, 2019, 11, 18555-18563.	8.0	30
6	A top-down strategy identifying molecular phase stabilizers to overcome microstructure instabilities in organic solar cells. Energy and Environmental Science, 2019, 12, 1078-1087.	30.8	89
7	Overcoming Microstructural Limitations in Water Processed Organic Solar Cells by Engineering Customized Nanoparticulate Inks. Advanced Energy Materials, 2018, 8, 1702857.	19.5	48
8	Microstructure instabilities in solution-processed organic bulk-heterojunction solar cells. , 2018, , .		0
9	Morphology Optimization via Side Chain Engineering Enables All-Polymer Solar Cells with Excellent Fill Factor and Stability. Journal of the American Chemical Society, 2018, 140, 8934-8943.	13.7	218
10	Panchromatic ternary/quaternary polymer/fullerene BHJ solar cells based on novel silicon naphthalocyanine and silicon phthalocyanine dye sensitizers. Journal of Materials Chemistry A, 2017, 5, 2550-2562.	10.3	32
11	Understanding the correlation and balance between the miscibility and optoelectronic properties of polymer–fullerene solar cells. Journal of Materials Chemistry A, 2017, 5, 17570-17579.	10.3	35
12	Introducing a New Potential Figure of Merit for Evaluating Microstructure Stability in Photovoltaic Polymer-Fullerene Blends. Journal of Physical Chemistry C, 2017, 121, 18153-18161.	3.1	52
13	Overcoming the Thermal Instability of Efficient Polymer Solar Cells by Employing Novel Fullereneâ∈Based Acceptors. Advanced Energy Materials, 2017, 7, 1601204.	19.5	69
14	Chiral polymeric microspheres grafted with optically active helical polymer chains: a new class of materials for chiral recognition and chirally controlled release. Polymer Chemistry, 2013, 4, 645-652.	3.9	38
15	Preparation and application of abietic acid-derived optically active helical polymers and their chiral hydrogels. Bioresource Technology, 2013, 129, 58-64.	9.6	18
16	Au@poly(<i>N</i> â€propargylamide) Nanoparticles: Preparation and Chiral Recognition. Macromolecular Rapid Communications, 2013, 34, 1319-1324.	3.9	12
17	Poly(N-propargylamide)s bearing cholesteryl moieties: Preparation and optical activity. Reactive and Functional Polymers, 2012, 72, 832-838.	4.1	11