
Philip Francis Thomsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7117541/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Environmental DNA – An emerging tool in conservation for monitoring past and present biodiversity. Biological Conservation, 2015, 183, 4-18.	4.1	1,421
2	Monitoring endangered freshwater biodiversity using environmental DNA. Molecular Ecology, 2012, 21, 2565-2573.	3.9	882
3	Nextâ€generation monitoring of aquatic biodiversity using environmental <scp>DNA</scp> metabarcoding. Molecular Ecology, 2016, 25, 929-942.	3.9	873
4	Detection of a Diverse Marine Fish Fauna Using Environmental DNA from Seawater Samples. PLoS ONE, 2012, 7, e41732.	2.5	747
5	Critical considerations for the application of environmental <scp>DNA</scp> methods to detect aquatic species. Methods in Ecology and Evolution, 2016, 7, 1299-1307.	5.2	684
6	A genome-wide association study identifies CDHR3 as a susceptibility locus for early childhood asthma with severe exacerbations. Nature Genetics, 2014, 46, 51-55.	21.4	497
7	Monitoring the near-extinct European weather loach in Denmark based on environmental DNA from water samples. Biological Conservation, 2015, 183, 46-52.	4.1	304
8	DNA metabarcoding—Need for robust experimental designs to draw sound ecological conclusions. Molecular Ecology, 2019, 28, 1857-1862.	3.9	300
9	Environmental DNA from Seawater Samples Correlate with Trawl Catches of Subarctic, Deepwater Fishes. PLoS ONE, 2016, 11, e0165252.	2.5	296
10	Investigating the Potential Use of Environmental DNA (eDNA) for Genetic Monitoring of Marine Mammals. PLoS ONE, 2012, 7, e41781.	2.5	294
11	Ancient and modern environmental DNA. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20130383.	4.0	292
12	DNA from Pre-Clovis Human Coprolites in Oregon, North America. Science, 2008, 320, 786-789.	12.6	283
13	Harnessing DNA to improve environmental management. Science, 2014, 344, 1455-1456.	12.6	229
14	Population characteristics of a large whale shark aggregation inferred from seawater environmental DNA. Nature Ecology and Evolution, 2017, 1, 4.	7.8	223
15	The Origin of Insects. Science, 2006, 314, 1883-1884.	12.6	155
16	Screening mammal biodiversity using DNA from leeches. Current Biology, 2012, 22, R262-R263.	3.9	150
17	Environmental DNA metabarcoding of wild flowers reveals diverse communities of terrestrial arthropods. Ecology and Evolution, 2019, 9, 1665-1679.	1.9	126
18	Seawater environmental DNA reflects seasonality of a coastal fish community. Marine Biology, 2017, 164. 1.	1.5	118

#	Article	IF	CITATIONS
19	Populationâ€level inferences from environmental DNA—Current status and future perspectives. Evolutionary Applications, 2020, 13, 245-262.	3.1	105
20	Non-Destructive Sampling of Ancient Insect DNA. PLoS ONE, 2009, 4, e5048.	2.5	99
21	Environmental DNA for improved detection and environmental surveillance of schistosomiasis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8931-8940.	7.1	94
22	Monitoring of noble, signal and narrow-clawed crayfish using environmental DNA from freshwater samples. PLoS ONE, 2017, 12, e0179261.	2.5	90
23	Species-specific detection and quantification of environmental DNA from marine fishes in the Baltic Sea. Journal of Experimental Marine Biology and Ecology, 2019, 510, 31-45.	1.5	88
24	Using vertebrate environmental DNA from seawater in biomonitoring of marine habitats. Conservation Biology, 2020, 34, 697-710.	4.7	80
25	Pancrustacean Evolution Illuminated by Taxon-Rich Genomic-Scale Data Sets with an Expanded Remipede Sampling. Genome Biology and Evolution, 2019, 11, 2055-2070.	2.5	76
26	Bionomics and distribution of the stag beetle, Lucanus cervus (L.) across Europe*. Insect Conservation and Diversity, 2011, 4, 23-38.	3.0	66
27	First maxillae suction discs in Branchiura (Crustacea): Development and evolution in light of the first molecular phylogeny of Branchiura, Pentastomida, and other "Maxillopoda― Arthropod Structure and Development, 2008, 37, 333-346.	1.4	51
28	Resource specialists lead local insect community turnover associated with temperature – analysis of an 18â€year fullâ€seasonal record of moths and beetles. Journal of Animal Ecology, 2016, 85, 251-261.	2.8	42
29	Genomeâ€scale target capture of mitochondrial and nuclear environmental DNA from water samples. Molecular Ecology Resources, 2021, 21, 690-702.	4.8	29
30	Shortâ€ŧerm temporal variation of coastal marine eDNA. Environmental DNA, 2022, 4, 747-762.	5.8	28
31	A National Scale "BioBlitz―Using Citizen Science and eDNA Metabarcoding for Monitoring Coastal Marine Fish. Frontiers in Marine Science, 2022, 9, .	2.5	28
32	Red-listed species and forest continuity – A multi-taxon approach to conservation in temperate forests. Forest Ecology and Management, 2016, 378, 144-159.	3.2	27
33	Vertical zonation and functional diversity of fish assemblages revealed by ROV videos at oil platforms in The Gulf. Journal of Fish Biology, 2017, 91, 947-967.	1.6	26
34	Individual haplotyping of whale sharks from seawater environmental DNA. Molecular Ecology Resources, 2022, 22, 56-65.	4.8	25
35	How do low dispersal species establish large range sizes? The case of the water beetle <i>Graphoderus bilineatus</i> . Ecography, 2013, 36, 770-777.	4.5	22
36	The Ediacaran origin of Ecdysozoa: integrating fossil and phylogenomic data. Journal of the Geological Society, 2022, 179, .	2.1	21

PHILIP FRANCIS THOMSEN

#	Article	IF	CITATIONS
37	Where have all the young wolves gone? Traffic and cryptic mortality create a wolf population sink in Denmark and northernmost Germany. Conservation Letters, 2021, 14, e12812.	5.7	20
38	Consequences of marine barriers for genetic diversity of the coralâ€specialist yellowbar angelfish from the Northwestern Indian Ocean. Ecology and Evolution, 2019, 9, 11215-11226.	1.9	19
39	Environmental DNA metabarcoding of cow dung reveals taxonomic and functional diversity of invertebrate assemblages. Molecular Ecology, 2021, 30, 3374-3389.	3.9	19
40	Seasonal turnover in community composition of streamâ€associated macroinvertebrates inferred from freshwater environmental DNA metabarcoding. Environmental DNA, 2021, 3, 861-876.	5.8	19
41	Tracing European eel in the diet of mesopelagic fishes from the Sargasso Sea using DNA from fish stomachs. Marine Biology, 2018, 165, 1.	1.5	18
42	Accumulation and diversity of airborne, eukaryotic environmental <scp>DNA</scp> . Environmental DNA, 2022, 4, 1323-1339.	5.8	18
43	Screening mammal biodiversity using DNA from leeches. Current Biology, 2012, 22, 1980.	3.9	17
44	Myxine jespersenae, a New Species of Hagfish (Myxiniformes: Myxinidae) from the North Atlantic Ocean. Copeia, 2005, 2005, 374-385.	1.3	13
45	The Phylogeny of Rhizocephalan Parasites of the Genus Heterosaccus using Molecular and Larval Data (Cirripedia: Rhizocephala; Sacculinidae). Israel Journal of Ecology and Evolution, 2008, 54, 223-238.	0.6	9
46	The Sandy Zebra Shark: A New Color Morph of the Zebra Shark Stegostoma tigrinum, with a Redescription of the Species and a Revision of Its Nomenclature. Copeia, 2019, 107, 524.	1.3	8
47	Significantly Higher Carabid Beetle (Coleoptera: Carabidae) Catch in Conventionally than in Organically Managed Christmas Tree Plantations. Journal of Entomological Science, 2012, 47, 110-124.	0.3	4
48	The DNA around Us. Trends in Ecology and Evolution, 2019, 34, 766-767.	8.7	1