List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7117508/publications.pdf Version: 2024-02-01

I R LYONS

#	Article	IF	CITATIONS
1	Auroral structures: Revealing the importance of meso-scale M-I coupling. , 2022, , 65-101.		1
2	Spaceâ€Ground Observations of Dynamics of Substorm Onset Beads. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	8
3	Unsteady Magnetopause Reconnection Under Quasiâ€Steady Solar Wind Driving. Geophysical Research Letters, 2022, 49, .	1.5	7
4	Effects of Subauroral Polarization Streams on the Upper Thermospheric Winds During Non torm Time. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	4
5	Auroral Beads in Conjunction With Kinetic Alfvén Waves in the Equatorial Innerâ€Magnetosphere. Geophysical Research Letters, 2022, 49, .	1.5	4
6	The Dependence of Cold and Hot Patches on Local Plasma Transport and Particle Precipitation in Northern Hemisphere Winter. Geophysical Research Letters, 2022, 49, .	1.5	3
7	Effects of Substorms on Highâ€Latitude Upper Thermospheric Winds. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028193.	0.8	5
8	Radar Observations of Flows Leading to Longitudinal Expansion of Substorm Onset Over Alaska. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028148.	0.8	6
9	Radar Observations of Flows Leading to Substorm Onset Over Alaska. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028147.	0.8	8
10	Rapid Injections of MeV Electrons and Extremely Fast Stepâ€Like Outer Radiation Belt Enhancements. Geophysical Research Letters, 2021, 48, e2021GL093151.	1.5	10
11	Geospace Plume and Its Impact on Dayside Magnetopause Reconnection Rate. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029117.	0.8	7
12	Embedded Regions 1 and 2 Fieldâ€Aligned Currents: Newly Recognized From Lowâ€Altitude Spacecraft Observations. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029207.	0.8	7
13	The Characteristics of EMIC Waves in the Magnetosphere Based on the Van Allen Probes and Arase Observations. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA029001.	0.8	35
14	Is Westward Travelling Surge Driven by the Polar Cap Flow Channels?. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028498.	0.8	7
15	Two-Dimensional Structure of Flow Channels and Associated Upward Field-Aligned Currents: Model and Observations. Frontiers in Astronomy and Space Sciences, 2021, 8, .	1.1	2
16	Solar and Geomagnetic Activity Impact on Occurrence and Spatial Size of Cold and Hot Polar Cap Patches. Geophysical Research Letters, 2021, 48, e2021GL094526.	1.5	8
17	Sensitivity of Upper Atmosphere to Different Characteristics of Flow Bursts in the Auroral Zone. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029253.	0.8	7
18	Direct Connection Between Auroral Oval Streamers/Flow Channels and Equatorward Traveling Ionospheric Disturbances. Frontiers in Astronomy and Space Sciences, 2021, 8, .	1.1	4

#	Article	IF	CITATIONS
19	SECS Analysis of Nighttime Magnetic Perturbation Events Observed in Arctic Canada. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029839.	0.8	12
20	Estimating Precipitating Energy Flux, Average Energy, and Hall Auroral Conductance From THEMIS All-Sky-Imagers With Focus on Mesoscales. Frontiers in Physics, 2021, 9, .	1.0	10
21	Source Region and Propagation of Dayside Largeâ€Scale Traveling Ionospheric Disturbances. Geophysical Research Letters, 2020, 47, e2020GL089451.	1.5	7
22	Ionospheric Modulation by Storm Time Pc5 ULF Pulsations and the Structure Detected by PFISRâ€THEMIS Conjunction. Geophysical Research Letters, 2020, 47, e2020GL089060.	1.5	11
23	Statistical Study of the Relationship Between Ion Upflow and Fieldâ€Aligned Current in the Topside Ionosphere for Both Hemispheres During Geomagnetic Disturbed and Quiet Time. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027538.	0.8	6
24	Dawnside Auroral Polarization Streams. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027742.	0.8	18
25	Generation and Evolution of Two Opposite Types of Mesoscale Plasma Sheet Bubbles. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028072.	0.8	5
26	Substorm onset and development: The crucial role of flow channels. Journal of Atmospheric and Solar-Terrestrial Physics, 2020, 211, 105474.	0.6	5
27	Radial Response of Outer Radiation Belt Relativistic Electrons During Enhancement Events at Geostationary Orbit. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027660.	0.8	4
28	On the Confinement of Ultrarelativistic Electron Remnant Belts to Low Shells. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027469.	0.8	9
29	Relative Contributions of Ion Convection and Particle Precipitation to Exciting Largeâ€Scale Traveling Atmospheric and Ionospheric Disturbances. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027342.	0.8	15
30	Extreme Magnetosphereâ€ionosphereâ€Thermosphere Responses to the 5 April 2010 Supersubstorm. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027654.	0.8	14
31	Relative contributions of large-scale and wedgelet currents in the substorm current wedge. Earth, Planets and Space, 2020, 72, 106.	0.9	14
32	The 2â€D Structure of Foreshockâ€Driven Field Line Resonances Observed by THEMIS Satellite and Groundâ€Based Imager Conjunctions. Journal of Geophysical Research: Space Physics, 2019, 124, 6792-6811.	0.8	20
33	Utilizing the Heliophysics/Geospace System Observatory to Understand Particle Injections: Their Scale Sizes and Propagation Directions. Journal of Geophysical Research: Space Physics, 2019, 124, 5584-5609.	0.8	37
34	Decay of Ultrarelativistic Remnant Belt Electrons Through Scattering by Plasmaspheric Hiss. Journal of Geophysical Research: Space Physics, 2019, 124, 5222-5233.	0.8	12
35	Nighttime Magnetic Perturbation Events Observed in Arctic Canada: 2. Multipleâ€Instrument Observations. Journal of Geophysical Research: Space Physics, 2019, 124, 7459-7476.	0.8	35
36	Oxygen Ion Dynamics in the Earth's Ring Current: Van Allen Probes Observations. Journal of Geophysical Research: Space Physics, 2019, 124, 7786-7798.	0.8	34

#	Article	IF	CITATIONS
37	Identification of Auroral Zone Activity Driving Largeâ€Scale Traveling Ionospheric Disturbances. Journal of Geophysical Research: Space Physics, 2019, 124, 700-714.	0.8	42
38	A Statistical Study of EMIC Waves Associated With and Without Energetic Particle Injection From the Magnetotail. Journal of Geophysical Research: Space Physics, 2019, 124, 433-450.	0.8	43
39	Storm Time Mesoscale Plasma Flows in the Nightside Highâ€Latitude Ionosphere: A Statistical Survey of Characteristics. Geophysical Research Letters, 2019, 46, 4079-4088.	1.5	8
40	EMIC Wave Properties Associated With and Without Injections in The Inner Magnetosphere. Journal of Geophysical Research: Space Physics, 2019, 124, 2029-2045.	0.8	36
41	Subauroral Neutral Wind Driving and Its Feedback to SAPS During the 17 March 2013 Geomagnetic Storm. Journal of Geophysical Research: Space Physics, 2019, 124, 2323-2337.	0.8	17
42	Impact of Flow Bursts in the Auroral Zone on the Ionosphere and Thermosphere. Journal of Geophysical Research: Space Physics, 2019, 124, 10459-10467.	0.8	12
43	Interplanetary Parameters Leading to Relativistic Electron Enhancement and Persistent Depletion Events at Geosynchronous Orbit and Potential for Prediction. Journal of Geophysical Research: Space Physics, 2018, 123, 1134-1145.	0.8	17
44	Spatial Distribution of Plasma Sheet Entropy Reduction Caused by a Plasma Bubble: Rice Convection Model Simulations. Journal of Geophysical Research: Space Physics, 2018, 123, 3380-3397.	0.8	18
45	Stormtime substorm onsets: occurrence and flow channel triggering. Earth, Planets and Space, 2018, 70, 81.	0.9	15
46	Dayside Magnetospheric and Ionospheric Responses to a Foreshock Transient on 25 June 2008: 2. 2â€Đ Evolution Based on Dayside Auroral Imaging. Journal of Geophysical Research: Space Physics, 2018, 123, 6347-6359.	0.8	44
47	Characteristics, Occurrence, and Decay Rates of Remnant Belts Associated With Threeâ€Belt Events in the Earth's Radiation Belts. Geophysical Research Letters, 2018, 45, 12,099.	1.5	11
48	Mesoscale <i>F</i> Region Neutral Winds Associated With Quasiâ€steady and Transient Nightside Auroral Forms. Journal of Geophysical Research: Space Physics, 2018, 123, 7968-7984.	0.8	15
49	Flow Shears at the Poleward Boundary of Omega Bands Observed During Conjunctions of Swarm and THEMIS ASI. Geophysical Research Letters, 2018, 45, 1218-1227.	1.5	23
50	Statistical Properties of Mesoscale Plasma Flows in the Nightside High‣atitude Ionosphere. Journal of Geophysical Research: Space Physics, 2018, 123, 6798-6820.	0.8	20
51	Impacts of Magnetosheath High‧peed Jets on the Magnetosphere and Ionosphere Measured by Optical Imaging and Satellite Observations. Journal of Geophysical Research: Space Physics, 2018, 123, 4879-4894.	0.8	41
52	Localized polar cap precipitation in association with nonstorm time airglow patches. Geophysical Research Letters, 2017, 44, 609-617.	1.5	8
53	Observational properties of dayside throat aurora and implications on the possible generation mechanisms. Journal of Geophysical Research: Space Physics, 2017, 122, 1853-1870.	0.8	57
54	Coordinated observations of two types of diffuse auroras near magnetic local noon by Magnetospheric Multiscale mission and ground allâ€sky camera. Geophysical Research Letters, 2017, 44, 8130-8139.	1.5	16

#	Article	IF	CITATIONS
55	Influence of Auroral Streamers on Rapid Evolution of Ionospheric SAPS Flows. Journal of Geophysical Research: Space Physics, 2017, 122, 12,406.	0.8	27
56	Investigation of triggering of poleward moving auroral forms using satelliteâ€imager coordinated observations. Journal of Geophysical Research: Space Physics, 2016, 121, 10,929.	0.8	15
57	Unsolved problems: Mesoscale polar cap flow channels' structure, propagation, and effects on space weather disturbances. Journal of Geophysical Research: Space Physics, 2016, 121, 3347-3352.	0.8	16
58	The 17 March 2013 storm: Synergy of observations related to electric field modes and their ionospheric and magnetospheric Effects. Journal of Geophysical Research: Space Physics, 2016, 121, 10,880.	0.8	27
59	Throat aurora: The ionospheric signature of magnetosheath particles penetrating into the magnetosphere. Geophysical Research Letters, 2016, 43, 1819-1827.	1.5	47
60	Localized field-aligned currents in the polar cap associated with airglow patches. Journal of Geophysical Research: Space Physics, 2016, 121, 10,172-10,189.	0.8	14
61	Statistical properties of substorm auroral onset beads/rays. Journal of Geophysical Research: Space Physics, 2016, 121, 8661-8676.	0.8	54
62	Analysis of close conjunctions between dayside polar cap airglow patches and flow channels by all-sky imager and DMSP. Earth, Planets and Space, 2016, 68, .	0.9	12
63	Localized reconnection in the magnetotail driven by lobe flow channels: Global MHD simulation. Journal of Geophysical Research: Space Physics, 2016, 121, 1327-1338.	0.8	21
64	Localized polar cap flow enhancement tracing using airglow patches: Statistical properties, IMF dependence, and contribution to polar cap convection. Journal of Geophysical Research: Space Physics, 2015, 120, 4064-4078.	0.8	33
65	Azimuthal flow bursts in the inner plasma sheet and possible connection with SAPS and plasma sheet earthward flow bursts. Journal of Geophysical Research: Space Physics, 2015, 120, 5009-5021.	0.8	34
66	Empirical modeling of 3â€D forceâ€balanced plasma and magnetic field structures during substorm growth phase. Journal of Geophysical Research: Space Physics, 2015, 120, 6496-6513.	0.8	29
67	Revisit of relationship between geosynchronous relativistic electron enhancements and magnetic storms. Geophysical Research Letters, 2015, 42, 6155-6161.	1.5	27
68	Polar cap precursor of nightside auroral oval intensifications using polar cap arcs. Journal of Geophysical Research: Space Physics, 2015, 120, 10,698-10,711.	0.8	14
69	A 2-D empirical plasma sheet pressure model for substorm growth phase using the Support Vector Regression Machine. Journal of Geophysical Research: Space Physics, 2015, 120, 1957-1973.	0.8	10
70	Properties of lowâ€latitude mantle plasma in the Earth's magnetotail: ARTEMIS observations and global MHD predictions. Journal of Geophysical Research: Space Physics, 2014, 119, 7264-7280.	0.8	22
71	Ionospheric flow structures associated with auroral beading at substorm auroral onset. Journal of Geophysical Research: Space Physics, 2014, 119, 9150-9159.	0.8	18
72	Evolution of nightside subauroral proton aurora caused by transient plasma sheet flows. Journal of Geophysical Research: Space Physics, 2014, 119, 5295-5304.	0.8	25

#	Article	IF	CITATIONS
73	Dayâ€night coupling by a localized flow channel visualized by polar cap patch propagation. Geophysical Research Letters, 2014, 41, 3701-3709.	1.5	65
74	Coordinated ionospheric observations indicating coupling between preonset flow bursts and waves that lead to substorm onset. Journal of Geophysical Research: Space Physics, 2014, 119, 3333-3344.	0.8	25
75	Statistical relationships between enhanced polar cap flows and PBIs. Journal of Geophysical Research: Space Physics, 2014, 119, 151-162.	0.8	36
76	Coordinated SuperDARN THEMIS ASI observations of mesoscale flow bursts associated with auroral streamers. Journal of Geophysical Research: Space Physics, 2014, 119, 142-150.	0.8	58
77	Current sheet scattering and ion isotropic boundary under 3â€D empirical forceâ€balanced magnetic field. Journal of Geophysical Research: Space Physics, 2014, 119, 8202-8211.	0.8	22
78	Reply to comment by Rae et al. on "Formation of substorm Pi2: A coherent response to auroral streamers and currents― Journal of Geophysical Research: Space Physics, 2013, 118, 3497-3499.	0.8	2
79	Auroral wave structures and ballooning instabilities in the plasma sheet. Journal of Geophysical Research: Space Physics, 2013, 118, 6319-6326.	0.8	11
80	Structures of dayside whistlerâ€mode waves deduced from conjugate diffuse aurora. Journal of Geophysical Research: Space Physics, 2013, 118, 664-673.	0.8	76
81	Substorm onset and expansion phase intensification precursors seen in polar cap patches and arcs. Journal of Geophysical Research: Space Physics, 2013, 118, 2034-2042.	0.8	40
82	Identifying the magnetotail source region leading to preonset poleward boundary intensifications. Journal of Geophysical Research: Space Physics, 2013, 118, 4335-4340.	0.8	13
83	Distinction between auroral substorm onset and traditional ground magnetic onset signatures. Journal of Geophysical Research: Space Physics, 2013, 118, 4080-4092.	0.8	32
84	Electrodynamics of the highâ€latitude trough: Its relationship with convection flows and fieldâ€aligned currents. Journal of Geophysical Research: Space Physics, 2013, 118, 2565-2572.	0.8	21
85	Coordinated THEMIS spacecraft and allâ€sky imager observations of interplanetary shock effects on plasma sheet flow bursts, poleward boundary intensifications, and streamers. Journal of Geophysical Research: Space Physics, 2013, 118, 3346-3356.	0.8	16
86	Tail reconnection region versus auroral activity inferred from conjugate ARTEMIS plasma sheet flow and auroral observations. Journal of Geophysical Research: Space Physics, 2013, 118, 5758-5766.	0.8	16
87	Empirical modeling of plasma sheet pressure and threeâ€dimensional forceâ€balanced magnetospheric magnetic field structure: 2. Modeling. Journal of Geophysical Research: Space Physics, 2013, 118, 6166-6175.	0.8	16
88	Westward traveling surges: Sliding along boundary arcs and distinction from onset arc brightening. Journal of Geophysical Research: Space Physics, 2013, 118, 7643-7653.	0.8	17
89	Spatial distributions of the ion to electron temperature ratio in the magnetosheath and plasma sheet. Journal of Geophysical Research, 2012, 117, .	3.3	103
90	Relation of substorm preâ€onset arc to largeâ€scale fieldâ€aligned current distribution. Geophysical Research Letters, 2012, 39, .	1.5	14

#	Article	IF	CITATIONS
91	External triggering of substorms identified using modern optical versus geosynchronous particle data. Annales Geophysicae, 2012, 30, 667-673.	0.6	8
92	On the formation of preâ€onset azimuthal pressure gradient in the nearâ€Earth plasma sheet. Journal of Geophysical Research, 2012, 117, .	3.3	17
93	Multipoint observations of substorm preâ€onset flows and time sequence in the ionosphere and magnetosphere. Journal of Geophysical Research, 2012, 117, .	3.3	9
94	A statistical study of the relative locations of electron and proton auroral boundaries inferred from meridian scanning photometer observations. Journal of Geophysical Research, 2012, 117, .	3.3	7
95	Formation of substorm Pi2: A coherent response to auroral streamers and currents. Journal of Geophysical Research, 2012, 117, .	3.3	40
96	Effect of an MLT dependent electron loss rate on the magnetosphereâ€ionosphere coupling. Journal of Geophysical Research, 2012, 117, .	3.3	21
97	Mechanism of substorm current wedge formation: THEMIS observations. Geophysical Research Letters, 2012, 39, .	1.5	75
98	Coupling of dipolarization front flow bursts to substorm expansion phase phenomena within the magnetosphere and ionosphere. Journal of Geophysical Research, 2012, 117, .	3.3	66
99	Twoâ€dimensional ionospheric flow pattern associated with auroral streamers. Journal of Geophysical Research, 2012, 117, .	3.3	24
100	Ionospheric convection signatures of tail fast flows during substorms and Poleward Boundary Intensifications (PBI). Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	15
101	GPS TEC observations of dynamics of the mid-latitude trough during substorms. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	30
102	Near-Earth plasma sheet azimuthal pressure gradient and associated auroral development soon before substorm onset. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	32
103	Spatial distributions of ions and electrons from the plasma sheet to the inner magnetosphere: Comparisons between THEMIS-Geotail statistical results and the Rice convection model. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	53
104	Effect of self-consistent magnetic field on plasma sheet penetration to the inner magnetosphere: Rice convection model simulations combined with modified Dungey force-balanced magnetic field solver. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	25
105	Multievent study of the correlation between pulsating aurora and whistler mode chorus emissions. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	85
106	SAPS intensification during substorm recovery: A multi-instrument case study. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	20
107	Statistical study of the effect of ULF fluctuations in the IMF on the cross polar cap potential drop for northward IMF. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	7
108	Superposed epoch analysis of magnetotail flux transport during substorms observed by THEMIS. Journal of Geophysical Research, 2011, 116, .	3.3	23

#	Article	IF	CITATIONS
109	Possible connection of polar cap flows to pre- and post-substorm onset PBIs and streamers. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	61
110	Relations between multiple auroral streamers, pre-onset thin arc formation, and substorm auroral onset. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	64
111	Substorm triggering by new plasma intrusion: THEMIS allâ€sky imager observations. Journal of Geophysical Research, 2010, 115, .	3.3	221
112	Enhanced transport across entire length of plasma sheet boundary field lines leading to substorm onset. Journal of Geophysical Research, 2010, 115, .	3.3	16
113	Substorm triggering by new plasma intrusion: Incoherentâ€scatter radar observations. Journal of Geophysical Research, 2010, 115, .	3.3	67
114	Identifying the Driver of Pulsating Aurora. Science, 2010, 330, 81-84.	6.0	249
115	Plasma sheet pressure evolution related to substorms. Journal of Geophysical Research, 2010, 115, .	3.3	24
116	Global simulation of EMIC wave excitation during the 21 April 2001 storm from coupled RCMâ€RAMâ€HOTRAY modeling. Journal of Geophysical Research, 2010, 115, .	3.3	120
117	Identification of substorm onset location and preonset sequence using Reimei, THEMIS GBO, PFISR, and Geotail. Journal of Geophysical Research, 2010, 115, .	3.3	24
118	Substorm onset by new plasma intrusion: THEMIS spacecraft observations. Journal of Geophysical Research, 2010, 115, .	3.3	50
119	Preonset time sequence of auroral substorms: Coordinated observations by allâ€sky imagers, satellites, and radars. Journal of Geophysical Research, 2010, 115, .	3.3	51
120	Reply to comment by Harald U. Frey on "Substorm triggering by new plasma intrusion: THEMIS allâ€sky imager observations― Journal of Geophysical Research, 2010, 115, .	3.3	11
121	Poker flat radar observations of the magnetosphere–ionosphere coupling electrodynamics of the earthward penetrating plasma sheet following convection enhancements. Journal of Atmospheric and Solar-Terrestrial Physics, 2009, 71, 717-728.	0.6	8
122	Azimuthal plasma pressure gradient in quiet time plasma sheet. Geophysical Research Letters, 2009, 36, .	1.5	55
123	Nightside ionospheric electrodynamics associated with substorms: PFISR and THEMIS ASI observations. Journal of Geophysical Research, 2009, 114, .	3.3	49
124	Evidence that solar wind fluctuations substantially affect the strength of dayside ionospheric convection. Journal of Geophysical Research, 2009, 114, .	3.3	24
125	Evidence that solar wind fluctuations substantially affect global convection and substorm occurrence. Journal of Geophysical Research, 2009, 114, .	3.3	27
126	Formation of the Harang reversal and its dependence on plasma sheet conditions: Rice convection model simulations. Journal of Geophysical Research, 2009, 114, .	3.3	54

#	Article	IF	CITATIONS
127	On the coupling between the Harang reversal evolution and substorm dynamics: A synthesis of SuperDARN, DMSP, and IMAGE observations. Journal of Geophysical Research, 2009, 114, .	3.3	64
128	Plasma sheet <i>P</i> ^{5/3} and <i>n</i> and associated plasma and energy transport for different convection strengths and <i>AE</i> levels. Journal of Geophysical Research, 2009, 114, .	3.3	52
129	Connections between plasma sheet transport, Region 2 currents, and entropy changes associated with convection, steady magnetospheric convection periods, and substorms. Journal of Geophysical Research, 2009, 114, .	3.3	18
130	Highâ€ŧime resolution dayside convection monitoring by incoherent scatter radar and a sample application. Journal of Geophysical Research, 2008, 113, .	3.3	3
131	Are repetitive particle injections during highâ€speed solar wind streams classic substorms?. Journal of Geophysical Research, 2008, 113, .	3.3	10
132	Numerical calculations of relativistic electron drift loss effect. Journal of Geophysical Research, 2008, 113, .	3.3	84
133	Dynamic pressure enhancements as a cause of largeâ€scale stormtime substorms. Journal of Geophysical Research, 2008, 113, .	3.3	14
134	Dayside reconnection enhancement resulting from a solar wind dynamic pressure increase. Journal of Geophysical Research, 2007, 112, n/a-n/a.	3.3	41
135	Reasons why some solar wind changes do not trigger substorms. Journal of Geophysical Research, 2007, 112, n/a-n/a.	3.3	14
136	Statistical significance of association between whistlerâ€mode chorus enhancements and enhanced convection periods during highâ€speed streams. Journal of Geophysical Research, 2007, 112, .	3.3	26
137	Energetic neutral atom response to solar wind dynamic pressure enhancements. Journal of Geophysical Research, 2007, 112, .	3.3	17
138	Sources, transport, and distributions of plasma sheet ions and electrons and dependences on interplanetary parameters under northward interplanetary magnetic field. Journal of Geophysical Research, 2007, 112, .	3.3	65
139	Statistical study of effect of solar wind dynamic pressure enhancements on dawn-to-dusk ring current asymmetry. Journal of Geophysical Research, 2006, 111, .	3.3	28
140	Auroral poleward boundary intensifications (PBIs): Their two-dimensional structure and associated dynamics in the plasma sheet. Journal of Geophysical Research, 2006, 111, .	3.3	62
141	Initial simulation results of storm-time ring current in a self-consistent magnetic field model. Journal of Geophysical Research, 2006, 111, .	3.3	16
142	Equatorial distributions of the plasma sheet ions, their electric and magnetic drifts, and magnetic fields under different interplanetary magnetic fieldBzconditions. Journal of Geophysical Research, 2006, 111, .	3.3	75
143	Repetitive substorms caused by Alfvénic waves of the interplanetary magnetic field during high-speed solar wind streams. Journal of Geophysical Research, 2006, 111, .	3.3	29
144	Global auroral responses to abrupt solar wind changes: Dynamic pressure, substorm, and null events. Journal of Geophysical Research, 2005, 110, .	3.3	68

#	Article	IF	CITATIONS
145	Enhanced solar wind geoeffectiveness after a sudden increase in dynamic pressure during southward IMF orientation. Journal of Geophysical Research, 2005, 110, .	3.3	66
146	Comparison of intense nightside shock-induced precipitation and substorm activity. Journal of Geophysical Research, 2005, 110, .	3.3	19
147	Comparison of geosynchronous energetic particle flux responses to solar wind dynamic pressure enhancements and substorms. Journal of Geophysical Research, 2005, 110, .	3.3	59
148	Solar wind-magnetosphere coupling leading to relativistic electron energization during high-speed streams. Journal of Geophysical Research, 2005, 110, .	3.3	84
149	Magnetospheric reconnection driven by solar wind pressure fronts. Annales Geophysicae, 2004, 22, 1367-1378.	0.6	61
150	Geosynchronous magnetic field response to solar wind dynamic pressure pulse. Journal of Geophysical Research, 2004, 109, .	3.3	62
151	Sawtooth oscillations directly driven by solar wind dynamic pressure enhancements. Journal of Geophysical Research, 2004, 109, .	3.3	56
152	Midnight radial profiles of the quiet and growth-phase plasma sheet: The Geotail observations. Journal of Geophysical Research, 2004, 109, .	3.3	35
153	Modeling the transition of the inner plasma sheet from weak to enhanced convection. Journal of Geophysical Research, 2004, 109, .	3.3	33
154	Modeling the inner plasma sheet protons and magnetic field under enhanced convection. Journal of Geophysical Research, 2003, 108, .	3.3	23
155	Observations of dayside convection reduction leading to substorm onset. Journal of Geophysical Research, 2003, 108, .	3.3	41
156	Substorm inner plasma sheet particle reduction. Journal of Geophysical Research, 2003, 108, .	3.3	29
157	Substorm onset by plasma sheet divergence. Journal of Geophysical Research, 2003, 108, .	3.3	33
158	Relation of substorm breakup arc to other growth-phase auroral arcs. Journal of Geophysical Research, 2002, 107, SMP 26-1.	3.3	65
159	Two-dimensional quiet time equilibrium for the inner plasma sheet protons and magnetic field. Geophysical Research Letters, 2002, 29, 39-1-39-4.	1.5	6
160	Auroral poleward boundary intensifications and tail bursty flows: A manifestation of a large-scale ULF oscillation?. Journal of Geophysical Research, 2002, 107, SMP 9-1.	3.3	51
161	Two-dimensional structure of auroral poleward boundary intensifications. Journal of Geophysical Research, 2002, 107, SIA 6-1.	3.3	78
162	Association between quiet-time Pi2 pulsations, poleward boundary intensifications, and plasma sheet particle fluxes. Geophysical Research Letters, 2002, 29, 7-1-7-4.	1.5	33

#	Article	IF	CITATIONS
163	Modeling the quiet time inner plasma sheet protons. Journal of Geophysical Research, 2001, 106, 6161-6178.	3.3	43
164	Predictions of substorms following northward turnings of the interplanetary magnetic field. Journal of Geophysical Research, 2000, 105, 375-384.	3.3	26
165	The Effect of the January 10, 1997, pressure pulse on the magnetosphere-ionosphere current system. Geophysical Monograph Series, 2000, , 217-226.	0.1	66
166	Auroral disturbances during the January 10, 1997 magnetic storm. Geophysical Research Letters, 2000, 27, 3237-3240.	1.5	48
167	Association between Geotail plasma flows and auroral poleward boundary intensifications observed by CANOPUS photometers. Journal of Geophysical Research, 1999, 104, 4485-4500.	3.3	247
168	ARIA II neutral flywheel-driven field-aligned currents in the postmidnight sector of the auroral oval: A case study. Journal of Geophysical Research, 1997, 102, 9749-9759.	3.3	8
169	Accuracy of using 6300 Ã auroral emission to identify the magnetic separatrix on the nightside of Earth. Journal of Geophysical Research, 1997, 102, 9697-9703.	3.3	65
170	Coordinated observations demonstrating external substorm triggering. Journal of Geophysical Research, 1997, 102, 27039-27051.	3.3	156
171	Substorms: Fundamental observational features, distinction from other disturbances, and external triggering. Journal of Geophysical Research, 1996, 101, 13011-13025.	3.3	142
172	Measurement of the magnetotail reconnection rate. Journal of Geophysical Research, 1996, 101, 15265-15276.	3.3	45
173	Locating the polar cap boundary from observations of 6300 Ã auroral emission. Journal of Geophysical Research, 1995, 100, 7855.	3.3	72
174	A new theory for magnetospheric substorms. Journal of Geophysical Research, 1995, 100, 19069.	3.3	152
175	Quiet-time intensifications along the poleward auroral boundary near midnight. Journal of Geophysical Research, 1994, 99, 287.	3.3	124
176	Proton aurora and substorm intensifications. Geophysical Research Letters, 1992, 19, 2167-2170.	1.5	191
177	The neutral circulation in the vicinity of a stable auroral arc. Journal of Geophysical Research, 1992, 97, 19489-19499.	3.3	29
178	Sondrestrom radar measurements of the reconnection electric field. Journal of Geophysical Research, 1991, 96, 13907-13912.	3.3	55
179	Characteristics of auroral electron precipitation on the morningside. Journal of Geophysical Research, 1986, 91, 11225-11234.	3.3	28
180	Feedback between neutral winds and auroral arc electrodynamics. Journal of Geophysical Research, 1986, 91, 13506-13512.	3.3	15

#	Article	IF	CITATIONS
181	The neutral wind "flywheel―as a source of quietâ€time, polarâ€cap currents. Geophysical Research Letters, 1985, 12, 101-104.	1.5	72
182	The perturbed neutral circulation in the vicinity of a symmetric stable auroral arc. Journal of Geophysical Research, 1985, 90, 12235-12248.	3.3	64
183	Generation of auroral omega bands by shear instability of the neutral winds. Journal of Geophysical Research, 1985, 90, 12321-12329.	3.3	41
184	Discrete aurora as the direct result of an inferred highâ€altitude generating potential distribution. Journal of Geophysical Research, 1981, 86, 1-8.	3.3	146
185	Near Earth Plasma Sheet Penetration and Geomagnetic Disturbances. Geophysical Monograph Series, 0, , 241-257.	0.1	19
186	Auroral Disturbances as a Manifestation of Interplay Between Large-Scale and Mesoscale Structure of Magnetosphere-Ionosphere Electrodynamical Coupling. Geophysical Monograph Series, 0, , 193-204.	0.1	10
187	Mutual Evolution of Aurora and Ionospheric Electrodynamic Features Near the Harang Reversal During Substorms, Geophysical Monograph Series, 0 159-170	0.1	14