
Francisco Meijide del RÃ-o

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7117144/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly Hydrophilic and Lipophilic Derivatives of Bile Salts. International Journal of Molecular Sciences, 2021, 22, 6684.	1.8	3
2	Revealing the complex self-assembly behaviour of sodium deoxycholate in aqueous solution. Journal of Colloid and Interface Science, 2021, 604, 415-428.	5.0	20
3	Crystal Structure of a Cationic Bile Salt Derivative ([3,5,7,12]-3-(2-naphthyloylamino)-7,12-dihydroxycholan-24-triethylammonium iodide). Crystals, 2019, 9, 135.	1.0	0
4	Thermodynamics of the aggregation of the bile anions of obeticholic and chenodeoxycholic acids in aqueous solution. Journal of Molecular Liquids, 2019, 296, 112092.	2.3	3
5	Analysis of an old controversy: The compensation temperature for micellization of surfactants. Advances in Colloid and Interface Science, 2018, 254, 94-98.	7.0	10
6	New curing agents for epoxy resins: protoporphyrins. Polymers for Advanced Technologies, 2018, 29, 329-336.	1.6	3
7	Physico-Chemical Characterization of Two Epoxy Systems Using Porphyrins as Curing Agents. Polymer Science - Series B, 2018, 60, 746-753.	0.3	Ο
8	Aggregation behavior of sodium 3-(octyloxy)-4-nitrobenzoate in aqueous solution. New Journal of Chemistry, 2018, 42, 19407-19414.	1.4	0
9	Physicochemical Characterization of BADGE n = 0/Zinc Meso-tetra(4-pyridyl) Porphyrin Resin. Polymer Science - Series B, 2018, 60, 481-496.	0.3	1
10	A Standard Structure for Bile Acids and Derivatives. Crystals, 2018, 8, 86.	1.0	7
11	Supramolecular assembly of a thermoresponsive steroidal surfactant with an oppositely charged thermoresponsive block copolymer. Physical Chemistry Chemical Physics, 2017, 19, 1504-1515.	1.3	19
12	Crystal structure of a lithium salt of a glucosyl derivative of lithocholic acid. Steroids, 2016, 113, 87-94.	0.8	4
13	Multi stimuli response of a single surfactant presenting a rich self-assembly behavior. RSC Advances, 2015, 5, 37800-37806.	1.7	27
14	A tryptophan-substituted cholic acid: Expanding the family of labelled biomolecules. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 483, 142-149.	2.3	9
15	Bile salts and derivatives: Rigid unconventional amphiphiles as dispersants, carriers and superstructure building blocks. Current Opinion in Colloid and Interface Science, 2015, 20, 170-182.	3.4	87
16	Diarmed (adamantyl/alkyl) surfactants from nitrilotriacetic acid. Colloids and Surfaces B: Biointerfaces, 2014, 123, 974-980.	2.5	1
17	Characterization of Carbon Nanotube Dispersions in Solutions of Bile Salts and Derivatives Containing Aromatic Substituents. Journal of Physical Chemistry B, 2014, 118, 1012-1021.	1.2	35
18	Self-aggregation mechanism of a naphthylamide cationic derivative of cholic acid. From fibers to tubules. RSC Advances, 2014, 4, 5598.	1.7	16

Francisco Meijide del RÃo

#	Article	IF	CITATIONS
19	Design of dialkyl surfactants from nitrilotriacetic acid as head group. RSC Advances, 2014, 4, 6869.	1.7	9
20	Crystal structure of head-to-head dimers of cholic and deoxycholic acid derivatives with different symmetric bridges. Steroids, 2013, 78, 247-254.	0.8	8
21	pH sensitive tubules of a bile acid derivative: a tubule opening by release of wall leaves. Physical Chemistry Chemical Physics, 2013, 15, 7560.	1.3	37
22	Catanionic Gels Based on Cholic Acid Derivatives. Langmuir, 2013, 29, 12342-12351.	1.6	33
23	Ice-like encapsulated water by two cholic acid moieties. Steroids, 2012, 77, 1228-1232.	0.8	7
24	Formation of tubules by p-tert-butylphenylamide derivatives of chenodeoxycholic and ursodeoxycholic acids in aqueous solution. Steroids, 2012, 77, 1205-1211.	0.8	23
25	Spontaneous Formation in the Solid State of Carbamate Derivatives of Bile Acids. Crystal Growth and Design, 2011, 11, 356-361.	1.4	10
26	Formation of host-guest and sandwich complexes by a β-cyclodextrin derivative. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2011, 69, 245-253.	1.6	5
27	Additional criterion for the determination of the handedness of 2 ₁ helices in crystals of bile acids: Crystal structure of a <i>tert</i> â€butylphenyl derivative of cholic acid. Chirality, 2011, 23, 940-947.	1.3	4
28	Catanionic Tubules with Tunable Charge. Angewandte Chemie - International Edition, 2010, 49, 6604-6607.	7.2	55
29	Enantioresolution and Chameleonic Mimicry of 2-Butanol with an Adamantylacetyl Derivative of Cholic Acid. Crystal Growth and Design, 2010, 10, 1124-1129.	1.4	13
30	Supramolecular Structures Generated by a <i>p</i> - <i>tert</i> -Butylphenylamide Derivative of Deoxycholic Acid. From Planar Sheets to Tubular Structures through Helical Ribbons. Langmuir, 2010, 26, 7768-7773.	1.6	20
31	Solubilization of cholesterol in aqueous solution by two β-cyclodextrin dimers and a negatively charged β-cyclodextrin derivative. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2009, 63, 309-317.	1.6	12
32	Aggregation Behavior of Tetracarboxylic Surfactants Derived from Cholic and Deoxycholic Acids and Ethylenediaminetetraacetic Acid. Langmuir, 2009, 25, 9037-9044.	1.6	13
33	Influence of the solvent ability to form hydrogen bonds in the crystal structure of		

#	Article	IF	CITATIONS
37	Study on the Structure of Hostâ^'Guest Supramolecular Polymers. Macromolecules, 2007, 40, 5899-5906.	2.2	22
38	Supramolecular Structures Generated by ap-tert-Butylphenyl-amide Derivative of Cholic Acid: From Vesicles to Molecular Tubes. Advanced Materials, 2007, 19, 1752-1756.	11.1	78
39	Thermodynamics of Formation of Hostâ^'Guest Supramolecular Polymers. Journal of the American Chemical Society, 2006, 128, 5728-5734.	6.6	97
40	pH Dependent Inâ^'Out Isomerism of an Amino-β-cyclodextrin Derivative. Journal of Physical Chemistry B, 2006, 110, 13399-13404.	1.2	11
41	New Lamellar Structure Formed by an Adamantyl Derivative of Cholic Acid. Journal of Physical Chemistry B, 2006, 110, 13679-13681.	1.2	43
42	Complexation of Adamantyl Compounds by \hat{l}^2 -Cyclodextrin and Monoaminoderivatives. Journal of Physical Chemistry B, 2005, 109, 9719-9726.	1.2	92
43	Crystal structure of the supramolecular linear polymer formed by the self-assembly of mono-6-deoxy-6-adamantylamide-Î ² -cyclodextrin. Acta Crystallographica Section B: Structural Science, 2004, 60, 204-210.	1.8	25
44	Spectra and structure of complexes formed by sodium fusidate and potassium helvolate with \hat{l}^{2-} and \hat{l}^{3-} cyclodextrin. Steroids, 2003, 68, 55-64.	0.8	20
45	Complexation of Bile Salts by Natural Cyclodextrins. Supramolecular Chemistry, 2003, 15, 33-43.	1.5	58
46	Dynamic Rheology of Sodium Deoxycholate Gels. Langmuir, 2002, 18, 987-991.	1.6	44
47	Supramolecular Linear Conglomerates Formed by β-Cyclodextrin Dimers and Sodium Deoxycholate. Supramolecular Chemistry, 2002, 14, 397-404.	1.5	20
48	Rheological behaviour of an amide pectin. Journal of Food Engineering, 2002, 55, 123-129.	2.7	49
49	Dendritic Growth of a Supramolecular Complex. Angewandte Chemie - International Edition, 2000, 39, 2856-2858.	7.2	38
50	Aggregation Behavior of Bile Salts in Aqueous Solutionâ€â€¡. Journal of Pharmaceutical Sciences, 1996, 85, 9-15.	1.6	170
51	Aggregation Behavior of Sodium Fusidate in Aqueous Solution. Journal of Pharmaceutical Sciences, 1994, 83, 828-832.	1.6	9
52	A step-by-step dilution-extraction method for laboratory experiments. Journal of Chemical Education, 1990, 67, 530.	1.1	20
53	Kinetics of the reactions between phenylureas and nitrous acid. Part 2. Nitrosation of 2,4,6-trimethyl- and 4-bromo-phenylurea. Journal of the Chemical Society Perkin Transactions II, 1988, , 2021-2027.	0.9	5
54	Kinetic studies on the formation of N-nitroso compounds XI. Nitrosation of dimethylamine by nitrite esters in aqueous basic media. Monatshefte Für Chemie, 1986, 117, 335-344.	0.9	19