List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/711689/publications.pdf Version: 2024-02-01

<u> Ερληδέοις Βονρι</u>

#	Article	IF	CITATIONS
1	Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 2016, 116, 061102.	2.9	8,753
2	GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters, 2017, 119, 161101.	2.9	6,413
3	Multi-messenger Observations of a Binary Neutron Star Merger [*] . Astrophysical Journal Letters, 2017, 848, L12.	3.0	2,805
4	GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Physical Review Letters, 2016, 116, 241103.	2.9	2,701
5	Advanced Virgo: a second-generation interferometric gravitational wave detector. Classical and Quantum Gravity, 2015, 32, 024001.	1.5	2,530
6	Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophysical Journal Letters, 2017, 848, L13.	3.0	2,314
7	GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Physical Review Letters, 2017, 118, 221101.	2.9	1,987
8	GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Physical Review Letters, 2017, 119, 141101.	2.9	1,600
9	Tests of General Relativity with GW150914. Physical Review Letters, 2016, 116, 221101.	2.9	1,224
10	Characterization of the LIGO detectors during their sixth science run. Classical and Quantum Gravity, 2015, 32, 115012.	1.5	1,029
11	GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence. Astrophysical Journal Letters, 2017, 851, L35.	3.0	968
12	Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors. Classical and Quantum Gravity, 2010, 27, 173001.	1.5	956
13	Binary Black Hole Mergers in the First Advanced LIGO Observing Run. Physical Review X, 2016, 6, .	2.8	898
14	A gravitational-wave standard siren measurement of the Hubble constant. Nature, 2017, 551, 85-88.	13.7	674
15	Properties of the Binary Black Hole Merger GW150914. Physical Review Letters, 2016, 116, 241102.	2.9	673
16	ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914. Astrophysical Journal Letters, 2016, 818, L22.	3.0	633
17	GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. Physical Review Letters, 2016, 116, 131103.	2.9	466
18	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity, 2016, 19, 1.	8.2	427

#	Article	IF	CITATIONS
19	GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. Physical Review D, 2016, 93, .	1.6	315
20	An upper limit on the stochastic gravitational-wave background of cosmological origin. Nature, 2009, 460, 990-994.	13.7	303
21	GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. Physical Review Letters, 2016, 116, 131102.	2.9	269
22	Virgo: a laser interferometer to detect gravitational waves. Journal of Instrumentation, 2012, 7, P03012-P03012.	0.5	257
23	Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016, 33, 134001.	1.5	225
24	LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914. Astrophysical Journal Letters, 2016, 826, L13.	3.0	210
25	Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121101.	2.9	194
26	Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 851, L16.	3.0	189
27	Search for gravitational waves from low mass compact binary coalescence in LIGO's sixth science run and Virgo's science runs 2 and 3. Physical Review D, 2012, 85, .	1.6	185
28	The Virgo status. Classical and Quantum Gravity, 2006, 23, S635-S642.	1.5	179
29	Status of the Virgo project. Classical and Quantum Gravity, 2011, 28, 114002.	1.5	171
30	Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated withÂGW170817. Astrophysical Journal Letters, 2017, 850, L39.	3.0	156
31	SEARCHES FOR GRAVITATIONAL WAVES FROM KNOWN PULSARS WITH SCIENCE RUN 5 LIGO DATA. Astrophysical Journal, 2010, 713, 671-685.	1.6	155
32	UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR–BLACK HOLE MERGERS FROM ADVANCED LIGO'S FIRST OBSERVING RUN. Astrophysical Journal Letters, 2016, 832, L21.	3.0	146
33	Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory. Astrophysical Journal Letters, 2017, 850, L35.	3.0	135
34	Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network. Physical Review D, 2013, 88, .	1.6	132
35	First Search for Gravitational Waves from Known Pulsars with Advanced LIGO. Astrophysical Journal, 2017, 839, 12.	1.6	131
36	GRAVITATIONAL WAVES FROM KNOWN PULSARS: RESULTS FROM THE INITIAL DETECTOR ERA. Astrophysical Journal, 2014, 785, 119.	1.6	125

#	Article	IF	CITATIONS
37	Observing gravitational-wave transient GW150914 with minimal assumptions. Physical Review D, 2016, 93, .	1.6	119
38	A diode-laser optical frequency standard based on laser-cooled Ca atoms: Sub-kilohertz spectroscopy by optical shelving detection. European Physical Journal D, 1999, 7, 449.	0.6	116
39	Virgo status. Classical and Quantum Gravity, 2008, 25, 184001.	1.5	116
40	Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1. Physical Review D, 2010, 82, .	1.6	111
41	All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run. Physical Review D, 2010, 81, .	1.6	107
42	All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run. Physical Review D, 2012, 85, .	1.6	107
43	Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model. Physical Review X, 2016, 6, .	2.8	106
44	SEARCH FOR GRAVITATIONAL WAVES ASSOCIATED WITH GAMMA-RAY BURSTS DURING LIGO SCIENCE RUN 6 AND VIRGO SCIENCE RUNS 2 AND 3. Astrophysical Journal, 2012, 760, 12.	1.6	104
45	Directly comparing GW150914 with numerical solutions of Einstein's equations for binary black hole coalescence. Physical Review D, 2016, 94, .	1.6	102
46	Effects of waveform model systematics on the interpretation of GW150914. Classical and Quantum Gravity, 2017, 34, 104002.	1.5	98
47	Directional Limits on Persistent Gravitational Waves Using LIGO S5 Science Data. Physical Review Letters, 2011, 107, 271102.	2.9	94
48	Search for gravitational waves from binary black hole inspiral, merger, and ringdown in LIGO-Virgo data from 2009–2010. Physical Review D, 2013, 87, .	1.6	92
49	High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube. Physical Review D, 2016, 93, .	1.6	92
50	Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data. Physical Review D, 2013, 87, .	1.6	91
51	SEARCH FOR GRAVITATIONAL-WAVE INSPIRAL SIGNALS ASSOCIATED WITH SHORT GAMMA-RAY BURSTS DURING LIGO'S FIFTH AND VIRGO'S FIRST SCIENCE RUN. Astrophysical Journal, 2010, 715, 1453-1461.	1.6	90
52	Thermal noise in mirrors of interferometric gravitational wave antennas. Physics Letters, Section A: General, Atomic and Solid State Physics, 1998, 246, 227-236.	0.9	89
53	Status of VIRGO. Classical and Quantum Gravity, 2004, 21, S385-S394.	1.5	89
54	BEATING THE SPIN-DOWN LIMIT ON GRAVITATIONAL WAVE EMISSION FROM THE VELA PULSAR. Astrophysical Journal, 2011, 737, 93.	1.6	89

#	Article	IF	CITATIONS
55	Improved Upper Limits on the Stochastic Gravitational-Wave Background from 2009–2010 LIGO and Virgo Data. Physical Review Letters, 2014, 113, 231101.	2.9	86
56	The present status of the VIRGO Central Interferometer*. Classical and Quantum Gravity, 2002, 19, 1421-1428.	1.5	85
57	Search for gravitational waves from binary black hole inspiral, merger, and ringdown. Physical Review D, 2011, 83, .	1.6	85
58	Calibration and sensitivity of the Virgo detector during its second science run. Classical and Quantum Gravity, 2011, 28, 025005.	1.5	85
59	Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121102.	2.9	84
60	Implementation and testing of the first prompt search forÂgravitational wave transients with electromagnetic counterparts. Astronomy and Astrophysics, 2012, 539, A124.	2.1	84
61	The status of VIRGO. Classical and Quantum Gravity, 2006, 23, S63-S69.	1.5	83
62	Measurement of the seismic attenuation performance of the VIRGO Superattenuator. Astroparticle Physics, 2005, 23, 557-565.	1.9	79
63	First low-latency LIGO+Virgo search for binary inspirals and their electromagnetic counterparts. Astronomy and Astrophysics, 2012, 541, A155.	2.1	75
64	The characterization of Virgo data and its impact on gravitational-wave searches. Classical and Quantum Gravity, 2012, 29, 155002.	1.5	73
65	Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO. Physical Review D, 2017, 96, .	1.6	73
66	On the Progenitor of Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 850, L40.	3.0	73
67	Ultrahigh-spectral-purity laser for the VIRGO experiment. Optics Letters, 1996, 21, 582.	1.7	72
68	All-sky search for short gravitational-wave bursts in the first Advanced LIGO run. Physical Review D, 2017, 95, .	1.6	69
69	The basic physics of the binary black hole merger GW150914. Annalen Der Physik, 2017, 529, 1600209.	0.9	69
70	Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors. Physical Review Letters, 2014, 112, 131101.	2.9	68
71	All-sky search for periodic gravitational waves in the full S5 LIGO data. Physical Review D, 2012, 85, .	1.6	66
72	SEARCHES FOR CONTINUOUS GRAVITATIONAL WAVES FROM NINE YOUNG SUPERNOVA REMNANTS. Astrophysical Journal, 2015, 813, 39.	1.6	66

#	Article	IF	CITATIONS
73	Directed search for continuous gravitational waves from the Galactic center. Physical Review D, 2013, 88, .	1.6	65
74	All-sky search for periodic gravitational waves in the O1 LIGO data. Physical Review D, 2017, 96, .	1.6	64
75	SUPPLEMENT: "THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914―(2016, ApJL, 833, L1). Astrophysical Journal, Supplement Series, 2016, 227, 14.	3.0	63
76	Measurements of Superattenuator seismic isolation by Virgo interferometer. Astroparticle Physics, 2010, 33, 182-189.	1.9	62
77	SWIFT FOLLOW-UP OBSERVATIONS OF CANDIDATE GRAVITATIONAL-WAVE TRANSIENT EVENTS. Astrophysical Journal, Supplement Series, 2012, 203, 28.	3.0	62
78	SEARCH FOR GRAVITATIONAL-WAVE BURSTS ASSOCIATED WITH GAMMA-RAY BURSTS USING DATA FROM LIGO SCIENCE RUN 5 AND VIRGO SCIENCE RUN 1. Astrophysical Journal, 2010, 715, 1438-1452.	1.6	60
79	First all-sky search for continuous gravitational waves from unknown sources in binary systems. Physical Review D, 2014, 90, .	1.6	60
80	First targeted search for gravitational-wave bursts from core-collapse supernovae in data of first-generation laser interferometer detectors. Physical Review D, 2016, 94, .	1.6	60
81	Noise from scattered light in Virgo's second science run data. Classical and Quantum Gravity, 2010, 27, 194011.	1.5	59
82	FIRST SEARCHES FOR OPTICAL COUNTERPARTS TO GRAVITATIONAL-WAVE CANDIDATE EVENTS. Astrophysical Journal, Supplement Series, 2014, 211, 7.	3.0	57
83	Status of Virgo detector. Classical and Quantum Gravity, 2007, 24, S381-S388.	1.5	56
84	SEARCH FOR GRAVITATIONAL WAVE BURSTS FROM SIX MAGNETARS. Astrophysical Journal Letters, 2011, 734, L35.	3.0	55
85	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. Astrophysical Journal, 2017, 841, 89.	1.6	52
86	The VIRGO interferometer for gravitational wave detection. Nuclear Physics, Section B, Proceedings Supplements, 1997, 54, 167-175.	0.5	50
87	Odyssey: a solar system mission. Experimental Astronomy, 2009, 23, 529-547.	1.6	49
88	Search for gravitational waves from intermediate mass binary black holes. Physical Review D, 2012, 85,	1.6	48
89	Scattered light noise in gravitational wave interferometric detectors: A statistical approach. Physical Review D, 1997, 56, 6085-6095.	1.6	47
90	Directed search for gravitational waves from Scorpius X-1 with initial LIGO data. Physical Review D, 2015, 91, .	1.6	47

#	Article	IF	CITATIONS
91	Upper Limits on Gravitational Waves from Scorpius X-1 from a Model-based Cross-correlation Search in Advanced LIGO Data. Astrophysical Journal, 2017, 847, 47.	1.6	46
92	Observation of Gravitational Waves from a Binary Black Hole Merger. , 2017, , 291-311.		45
93	SUPPLEMENT: "LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914―(2016, ApJL, 826, L13). Astrophysical Journal, Supplement Series, 2016, 225, 8.	3.0	44
94	Upper limits on a stochastic gravitational-wave background using LIGO and Virgo interferometers at 600–1000ÂHz. Physical Review D, 2012, 85, .	1.6	43
95	The NINJA-2 project: detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations. Classical and Quantum Gravity, 2014, 31, 115004.	1.5	42
96	Searching for stochastic gravitational waves using data from the two colocated LIGO Hanford detectors. Physical Review D, 2015, 91, .	1.6	39
97	Narrow-band search of continuous gravitational-wave signals from Crab and Vela pulsars in Virgo VSR4 data. Physical Review D, 2015, 91, .	1.6	37
98	Mirror thermal noise in interferometric gravitational-wave detectors. Physics Letters, Section A: General, Atomic and Solid State Physics, 1995, 198, 74-78.	0.9	36
99	Search for gravitational radiation from intermediate mass black hole binaries in data from the second LIGO-Virgo joint science run. Physical Review D, 2014, 89, .	1.6	35
100	Comprehensive all-sky search for periodic gravitational waves in the sixth science run LIGO data. Physical Review D, 2016, 94, .	1.6	35
101	Implementation of an \$mathcal{F}\$-statistic all-sky search for continuous gravitational waves in Virgo VSR1 data. Classical and Quantum Gravity, 2014, 31, 165014.	1.5	34
102	A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 008-008.	1.9	32
103	Search for Gravitational Waves Associated with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>i³</mml:mi>-ray Bursts Detected by the Interplanetary Network. Physical Review Letters, 2014, 113, 011102</mml:math 	2.9	32
104	First low frequency all-sky search for continuous gravitational wave signals. Physical Review D, 2016, 93, .	1.6	32
105	The Virgo 3 km interferometer for gravitational wave detection. Journal of Optics, 2008, 10, 064009.	1.5	31
106	Search for long-lived gravitational-wave transients coincident with long gamma-ray bursts. Physical Review D, 2013, 88, .	1.6	31
107	Results of the deepest all-sky survey for continuous gravitational waves on LIGO S6 data running on the Einstein@Home volunteer distributed computing project. Physical Review D, 2016, 94, .	1.6	31
108	The VIRGO large mirrors: a challenge for low loss coatings. Classical and Quantum Gravity, 2004, 21, S935-S945.	1.5	30

#	Article	IF	CITATIONS
109	Matter wave explorer of gravity (MWXG). Experimental Astronomy, 2009, 23, 611-649.	1.6	30
110	Status and perspectives of the Virgo gravitational wave detector. Journal of Physics: Conference Series, 2010, 203, 012074.	0.3	29
111	Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube. Physical Review D, 2014, 90, .	1.6	29
112	Methods and results of a search for gravitational waves associated with gamma-ray bursts using the GEO 600, LIGO, and Virgo detectors. Physical Review D, 2014, 89, .	1.6	29
113	All-sky search for long-duration gravitational wave transients with initial LIGO. Physical Review D, 2016, 93, .	1.6	29
114	Sapphire beamsplitters and test masses for advanced laser interferometer gravitational wave detectors. Physics Letters, Section A: General, Atomic and Solid State Physics, 1996, 218, 197-206.	0.9	28
115	Search for gravitational waves associated with GRB 050915a using the Virgo detector. Classical and Quantum Gravity, 2008, 25, 225001.	1.5	28
116	The Seismic Superattenuators of the Virgo Gravitational Waves Interferometer. Journal of Low Frequency Noise Vibration and Active Control, 2011, 30, 63-79.	1.3	28
117	Search for gravitational wave ringdowns from perturbed intermediate mass black holes in LIGO-Virgo data from 2005–2010. Physical Review D, 2014, 89, .	1.6	28
118	The Advanced Virgo detector. Journal of Physics: Conference Series, 2015, 610, 012014.	0.3	27
119	Astrophysically triggered searches for gravitational waves: status and prospects. Classical and Quantum Gravity, 2008, 25, 114051.	1.5	26
120	Properties of seismic noise at the Virgo site. Classical and Quantum Gravity, 2004, 21, S433-S440.	1.5	25
121	The commissioning of the central interferometer of the Virgo gravitational wave detector. Astroparticle Physics, 2004, 21, 1-22.	1.9	22
122	A local control system for the test masses of the Virgo gravitational wave detector. Astroparticle Physics, 2004, 20, 617-628.	1.9	22
123	The variable finesse locking technique. Classical and Quantum Gravity, 2006, 23, S85-S89.	1.5	22
124	40-GHz Photonic Synthesizer Using a Dual-Polarization Microlaser. IEEE Photonics Technology Letters, 2010, 22, 1738-1740.	1.3	22
125	The VIRGO injection system. Classical and Quantum Gravity, 2002, 19, 1829-1833.	1.5	21
126	Virgo upgrade investigations. Journal of Physics: Conference Series, 2006, 32, 223-229.	0.3	21

#	Article	IF	CITATIONS
127	Dual frequency laser with two continuously and widely tunable frequencies for optical referencing of GHz to THz beatnotes. Optics Express, 2014, 22, 17673.	1.7	21
128	Application of a Hough search for continuous gravitational waves on data from the fifth LIGO science run. Classical and Quantum Gravity, 2014, 31, 085014.	1.5	21
129	First locking of the Virgo central area interferometer with suspension hierarchical control. Astroparticle Physics, 2004, 20, 629-640.	1.9	19
130	Gravitational waves by gamma-ray bursts and the Virgo detector: the case of GRB 050915a. Classical and Quantum Gravity, 2007, 24, S671-S679.	1.5	19
131	Search for continuous gravitational waves from neutron stars in globular cluster NGC 6544. Physical Review D, 2017, 95, .	1.6	19
132	Narrow Linewidth Tunable Terahertz Radiation By Photomixing Without Servo-Locking. IEEE Transactions on Terahertz Science and Technology, 2014, 4, 260-266.	2.0	18
133	Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers. Physical Review D, 2016, 93, .	1.6	17
134	Status of the VIRGO experiment. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1995, 360, 258-262.	0.7	16
135	The Virgo automatic alignment system. Classical and Quantum Gravity, 2006, 23, S91-S101.	1.5	16
136	Lock acquisition of the Virgo gravitational wave detector. Astroparticle Physics, 2008, 30, 29-38.	1.9	16
137	Gravitational wave burst search in the Virgo C7 data. Classical and Quantum Gravity, 2009, 26, 085009.	1.5	16
138	GHz bandwidth noise eater hybrid optical amplifier: design guidelines. Optics Letters, 2014, 39, 4239.	1.7	16
139	Characterization of the LIGO 4 km Fabry–Perot cavities via their high-frequency dynamic responses to length and laser frequency variations. Classical and Quantum Gravity, 2004, 21, S487-S492.	1.5	15
140	VIRGO: a large interferometer for gravitational wave detection started its first scientific run. Journal of Physics: Conference Series, 2008, 120, 032007.	0.3	15
141	Last stage control and mechanical transfer function measurement of the VIRGO suspensions. Review of Scientific Instruments, 2002, 73, 2143-2149.	0.6	14
142	Low-loss coatings for the VIRGO large mirrors. , 2004, , .		14
143	Search for transient gravitational waves in coincidence with short-duration radio transients during 2007–2013. Physical Review D, 2016, 93, .	1.6	14
144	Search for inspiralling binary events in the Virgo Engineering Run data. Classical and Quantum Gravity, 2004, 21, S709-S716.	1.5	13

#	Article	IF	CITATIONS
145	Coincidence analysis between periodic source candidates in C6 and C7 Virgo data. Classical and Quantum Gravity, 2007, 24, S491-S499.	1.5	13
146	Measurement of the optical parameters of the Virgo interferometer. Applied Optics, 2007, 46, 3466.	2.1	13
147	In-vacuum optical isolation changes by heating in a Faraday isolator. Applied Optics, 2008, 47, 5853.	2.1	13
148	First joint gravitational wave search by the AURIGA–EXPLORER–NAUTILUS–Virgo Collaboration. Classical and Quantum Gravity, 2008, 25, 205007.	1.5	13
149	Performance of the Virgo interferometer longitudinal control system during the second science run. Astroparticle Physics, 2011, 34, 521-527.	1.9	13
150	Accurate measurement method of Fabry-Perot cavity parameters via optical transfer function. Applied Optics, 2007, 46, 2611.	2.1	12
151	The NoEMi (Noise Frequency Event Miner) framework. Journal of Physics: Conference Series, 2012, 363, 012037.	0.3	12
152	Finesse and mirror speed measurement for a suspended Fabry–Perot cavity using the ringing effect. Physics Letters, Section A: General, Atomic and Solid State Physics, 2000, 271, 314-318.	0.9	11
153	Automatic Alignment for the first science run of the Virgo interferometer. Astroparticle Physics, 2010, 33, 131-139.	1.9	11
154	Central heating radius of curvature correction (CHRoCC) for use in large scale gravitational wave interferometers. Classical and Quantum Gravity, 2013, 30, 055017.	1.5	11
155	Improving the timing precision for inspiral signals found by interferometric gravitational wave detectors. Classical and Quantum Gravity, 2007, 24, S617-S625.	1.5	10
156	Cleaning the Virgo sampled data for the search of periodic sources of gravitational waves. Classical and Quantum Gravity, 2009, 26, 204002.	1.5	10
157	Performances of the Virgo interferometer longitudinal control system. Astroparticle Physics, 2010, 33, 75-80.	1.9	10
158	Reconstruction of the gravitational wave signal h (t) during the Virgo science runs and independent validation with a photon calibrator. Classical and Quantum Gravity, 2014, 31, 165013.	1.5	10
159	Synthesis of a 30-Hz Linewidth Wave Tunable Over 500 GHz. IEEE Transactions on Microwave Theory and Techniques, 2017, 65, 1367-1371.	2.9	10
160	Analysis of noise lines in the Virgo C7 data. Classical and Quantum Gravity, 2007, 24, S433-S443.	1.5	9
161	Status of coalescing binaries search activities in Virgo. Classical and Quantum Gravity, 2007, 24, 5767-5775.	1.5	9
162	Noise studies during the first Virgo science run and after. Classical and Quantum Gravity, 2008, 25, 184003.	1.5	8

#	Article	IF	CITATIONS
163	Laser with an in-loop relative frequency stability of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow> <mml:mn> 1.0 < /mml:mn> <mml:mo>× < /mml:mo> <mml:msup> <mml:mrow> <mm a 100-ms time scale for gravitational-wave detection. Physical Review A, 2009, 79, .</mm </mml:mrow></mml:msup></mml:mo></mml:mn></mml:mrow></mml:math 	l:mn>10<	/mml:mn> </td
164	Virgo calibration and reconstruction of the gravitationnal wave strain during VSR1. Journal of Physics: Conference Series, 2010, 228, 012015.	0.3	8
165	A state observer for the Virgo inverted pendulum. Review of Scientific Instruments, 2011, 82, 094502.	0.6	8
166	Data analysis methods for non-Gaussian, nonstationary and nonlinear features and their application to VIRGO. Classical and Quantum Gravity, 2003, 20, S915-S924.	1.5	7
167	NAP: a tool for noise data analysis. Application to Virgo engineering runs. Classical and Quantum Gravity, 2005, 22, S1041-S1049.	1.5	7
168	The status of coalescing binaries search code in Virgo, and the analysis of C5 data. Classical and Quantum Gravity, 2006, 23, S187-S196.	1.5	7
169	The Virgo interferometric gravitational antenna. Optics and Lasers in Engineering, 2007, 45, 478-487.	2.0	7
170	The Real-Time Distributed Control of the Virgo Interferometric Detector of Gravitational Waves. IEEE Transactions on Nuclear Science, 2008, 55, 302-310.	1.2	7
171	Commissioning status of the Virgo interferometer. Classical and Quantum Gravity, 2010, 27, 149801.	1.5	7
172	A simple line detection algorithm applied to Virgo data. Classical and Quantum Gravity, 2005, 22, S1189-S1196.	1.5	6
173	Automatic Alignment system during the second science run of the Virgo interferometer. Astroparticle Physics, 2011, 34, 327-332.	1.9	6
174	Status of the Advanced Virgo gravitational wave detector. International Journal of Modern Physics A, 2017, 32, 1744003.	0.5	6
175	Results of the Virgo central interferometer commissioning. Classical and Quantum Gravity, 2004, 21, S395-S402.	1.5	5
176	The last-stage suspension of the mirrors for the gravitational wave antenna Virgo. Classical and Quantum Gravity, 2004, 21, S425-S432.	1.5	5
177	Testing the detection pipelines for inspirals with Virgo commissioning run C4 data. Classical and Quantum Gravity, 2005, 22, S1139-S1148.	1.5	5
178	Length Sensing and Control in the Virgo Gravitational Wave Interferometer. IEEE Transactions on Instrumentation and Measurement, 2006, 55, 1985-1995.	2.4	5
179	Data Acquisition System of the Virgo Gravitational Waves Interferometric Detector. IEEE Transactions on Nuclear Science, 2008, 55, 225-232.	1.2	5
180	The status of virgo. Journal of Physics: Conference Series, 2008, 110, 062025.	0.3	5

#	Article	IF	CITATIONS
181	Optomechanical issues in the gravitational wave detector Advanced VIRGO. Comptes Rendus Physique, 2011, 12, 888-897.	0.3	5
182	Characterization of the Virgo seismic environment. Classical and Quantum Gravity, 2012, 29, 025005.	1.5	5
183	Frequency Stabilization of a Laser Tunable Over 1 THz in an All Fibered System. IEEE Photonics Technology Letters, 2016, 28, 1249-1252.	1.3	5
184	Lock acquisition of the central interferometer of the gravitational wave detector Virgo. Astroparticle Physics, 2004, 21, 465-477.	1.9	4
185	A first study of environmental noise coupling to the Virgo interferometer. Classical and Quantum Gravity, 2005, 22, S1069-S1077.	1.5	4
186	Environmental noise studies in Virgo. Journal of Physics: Conference Series, 2006, 32, 80-88.	0.3	4
187	Data quality studies for burst analysis of Virgo data acquired during Weekly Science Runs. Classical and Quantum Gravity, 2007, 24, S415-S422.	1.5	4
188	Control of the laser frequency of the Virgo gravitational wave interferometer with an in-loop relative frequency stability of 1.0 ${\rm \tilde{A}}-$ 10 ${\rm \tilde{a}}^{-}$ 21 on a 100 ms time scale. , 2009, , .		4
189	THE VIRGO INTERFEROMETER FOR GRAVITATIONAL WAVE DETECTION. International Journal of Modern Physics D, 2011, 20, 2075-2079.	0.9	4
190	Testing Virgo burst detection tools on commissioning run data. Classical and Quantum Gravity, 2006, 23, S197-S205.	1.5	3
191	Publisher's Note: All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run [Phys. Rev. D 81 , 102001 (2010)]. Physical Review D, 2012, 85, .	1.6	3
192	Control of the double pendulum optics suspension system of a 30 m triangular Fabry–Pérot cavity. Review of Scientific Instruments, 2000, 71, 2890-2894.	0.6	2
193	Status of VIRGO. , 2004, 5500, 58.		2
194	Virgo and the worldwide search for gravitational waves. AIP Conference Proceedings, 2005, , .	0.3	2
195	Virgo status and commissioning results. Classical and Quantum Gravity, 2005, 22, S185-S191.	1.5	2
196	Noise monitor tools and their application to Virgo data. Journal of Physics: Conference Series, 2012, 363, 012024.	0.3	2
197	Publisher's Note: Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1 [Phys. Rev. D82, 102001 (2010)]. Physical Review D, 2012, 85, .	1.6	2
198	A first test of a sine-Hough method for the detection of pulsars in binary systems using the E4 Virgo engineering run data. Classical and Quantum Gravity, 2004, 21, S717-S727.	1.5	1

#	Article	IF	CITATIONS
199	Methods of gravitational wave detection in the VIRGO Interferometer. , 2007, , .		1
200	The Real-time Distributed Control of the Virgo Interferometric Detector of Gravitational Waves. , 2007, , .		1
201	Status of the commissioning of the Virgo interferometer. , 2012, , .		1
202	Narrow linewidth tunable THz signal radiated by photomixing: coupling a unitravelling carrier photodiode and a two-axis dual-frequency laser. , 2012, , .		1
203	High spectral purity microwave and terahertz oscillator. , 2013, , .		1
204	Dual-polarization DFB fiber lasers as optical phase-locked microwave sources in the 1-10 GHz range. , 2018, , .		1
205	Laser systems for gravitational wave detection. , 2005, , .		0
206	A parallel in-time analysis system for Virgo Journal of Physics: Conference Series, 2006, 32, 35-43.	0.3	0
207	Normal/independent noise in VIRGO data. Classical and Quantum Gravity, 2006, 23, S829-S836.	1.5	0
208	A cross-correlation method to search for gravitational wave bursts with AURIGA and Virgo. Classical and Quantum Gravity, 2008, 25, 114046.	1.5	0
209	Tools for noise characterization in Virgo. Journal of Physics: Conference Series, 2010, 243, 012004.	0.3	0
210	Beating Fabry-Perot Cavity Resonant Eigen-frequencies to Detect Gravitational Waves. , 2010, , .		0
211	Narrow linewidth tunable THz signal generation using a unitravelling carrier photodiode and a dual-mode laser. , 2012, , .		0
212	Narrow linewidth tunable THz signal radiated by $1.55 \hat{l}$ /4m photomixing. Proceedings of SPIE, 2012, , .	0.8	0
213	Towards optical fiber synthesis of millimeter and submillimeter waves. , 2016, , .		0
214	Investigation of the coupling between pump amplitude noise and differential phase noise in an Er,Yb:glass two-polarization dual-frequency solid-state laser. Journal of the Optical Society of America B: Optical Physics, 2016, 33, 589.	0.9	0
215	An optical instrument for the submillimeter spectroscopy of the volatile metabolome. , 2019, , .		0

#	Article	IF	CITATIONS
217	The Virgo Gravitational Wave Detector. , 2009, , .		0
218	Control of Interferometric Gravitational Wave Detectors. , 0, , 303-311.		0