
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/711649/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Native mass spectrometry-based metabolomics identifies metal-binding compounds. Nature Chemistry, 2022, 14, 100-109.	6.6	30
2	Multi-omics analyses of the ulcerative colitis gut microbiome link Bacteroides vulgatus proteases with disease severity. Nature Microbiology, 2022, 7, 262-276.	5.9	110
3	Salmonella respiration turns the tables on propionate. Trends in Microbiology, 2022, 30, 206-208.	3.5	3
4	Age-associated impairment of T cell immunity is linked to sex-dimorphic elevation of N-glycan branching. Nature Aging, 2022, 2, 231-242.	5.3	12
5	Harnessing Iron Acquisition Machinery to Target <i>Enterobacteriaceae</i> . Journal of Infectious Diseases, 2021, 223, S307-S313.	1.9	16
6	Enterobactin- and salmochelin-Î ² -lactam conjugates induce cell morphologies consistent with inhibition of penicillin-binding proteins in uropathogenic <i>Escherichia coli</i> CFT073. Chemical Science, 2021, 12, 4041-4056.	3.7	18
7	Conjugation to Enterobactin and Salmochelin S4 Enhances the Antimicrobial Activity and Selectivity of β-Lactam Antibiotics against Nontyphoidal <i>Salmonella</i> . ACS Infectious Diseases, 2021, 7, 1248-1259.	1.8	17
8	lon identity molecular networking for mass spectrometry-based metabolomics in the GNPS environment. Nature Communications, 2021, 12, 3832.	5.8	119
9	Special Collection on the Microbiome and Infection. Infection and Immunity, 2021, 89, e0035621.	1.0	1
10	The interaction of enteric bacterial effectors with the host engulfment pathway control innate immune responses. Gut Microbes, 2021, 13, 1991776.	4.3	11
11	Siderophore-mediated zinc acquisition enhances enterobacterial colonization of the inflamed gut. Nature Communications, 2021, 12, 7016.	5.8	35
12	Iron at the host-microbe interface. Molecular Aspects of Medicine, 2020, 75, 100895.	2.7	24
13	Pathogen Interference: Targeting Virulence Factors to Tackle Intracellular Microbes. Cell Chemical Biology, 2020, 27, 765-767.	2.5	6
14	CD8 T cells drive anorexia, dysbiosis, and blooms of a commensal with immunosuppressive potential after viral infection. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24998-25007.	3.3	10
15	Targeted Depletion of Bacteria from Mixed Populations by Programmable Adhesion with Antagonistic Competitor Cells. Cell Host and Microbe, 2020, 28, 313-321.e6.	5.1	62
16	Global chemical effects of the microbiome include new bile-acid conjugations. Nature, 2020, 579, 123-129.	13.7	316
17	CRTAM Shapes the Gut Microbiota and Enhances the Severity of Infection. Journal of Immunology, 2019, 203, 532-543.	0.4	8
18	CCL28 Is Involved in Mucosal IgA Responses, Olfaction, and Resistance to Enteric Infections. Journal of Interferon and Cytokine Research, 2019, 39, 214-223.	0.5	9

#	Article	IF	CITATIONS
19	Probiotic fengycins dis(Agr)ee with Staphylococcus aureus colonization. Cell Research, 2019, 29, 93-94.	5.7	6
20	G.I. pros: Antimicrobial defense in the gastrointestinal tract. Seminars in Cell and Developmental Biology, 2019, 88, 129-137.	2.3	35
21	Mechanisms to Evade the Phagocyte Respiratory Burst Arose by Convergent Evolution in Typhoidal Salmonella Serovars. Cell Reports, 2018, 22, 1787-1797.	2.9	34
22	Esterase-Catalyzed Siderophore Hydrolysis Activates an Enterobactin–Ciprofloxacin Conjugate and Confers Targeted Antibacterial Activity. Journal of the American Chemical Society, 2018, 140, 5193-5201.	6.6	101
23	Genome-scale metabolic reconstructions of multiple Salmonella strains reveal serovar-specific metabolic traits. Nature Communications, 2018, 9, 3771.	5.8	109
24	Defining Host Responses during Systemic Bacterial Infection through Construction of a Murine Organ Proteome Atlas. Cell Systems, 2018, 6, 579-592.e4.	2.9	23
25	A Worm's Gut Feelings: Neuronal Muscarinic and Epithelial Canonical Wnt Pathways Promote Antimicrobial Defense. Immunity, 2018, 48, 839-841.	6.6	3
26	Learning from bacterial competition in the host to develop antimicrobials. Nature Medicine, 2018, 24, 1097-1103.	15.2	70
27	Bariatric surgery attenuates colitis in an obese murine model. Surgery for Obesity and Related Diseases, 2017, 13, 661-668.	1.0	4
28	Identification of IL-40, a Novel B Cell–Associated Cytokine. Journal of Immunology, 2017, 199, 3326-3335.	0.4	19
29	Beneficial Effects of Sodium Phenylbutyrate Administration during Infection with Salmonella enterica Serovar Typhimurium. Infection and Immunity, 2016, 84, 2639-2652.	1.0	26
30	Cytokines IL-17 and IL-22 in the host response to infection. Pathogens and Disease, 2016, 74, ftw111.	0.8	138
31	Close encounters of the typeâ€six kind: injected bacterial toxins modulate gut microbial composition. EMBO Reports, 2016, 17, 1242-1244.	2.0	0
32	Siderophores: More than Stealing Iron. MBio, 2016, 7, .	1.8	68
33	Siderophore-based immunization strategy to inhibit growth of enteric pathogens. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13462-13467.	3.3	56
34	Microcins mediate competition among Enterobacteriaceae in the inflamed gut. Nature, 2016, 540, 280-283.	13.7	390
35	Salmonella Mitigates Oxidative Stress and Thrives in the Inflamed Gut by Evading Calprotectin-Mediated Manganese Sequestration. Cell Host and Microbe, 2016, 19, 814-825.	5.1	109
36	Mucosal immunity to pathogenic intestinal bacteria. Nature Reviews Immunology, 2016, 16, 135-148.	10.6	264

3

#	Article	IF	CITATIONS
37	Metals in infectious diseases and nutritional immunity. Metallomics, 2015, 7, 926-928.	1.0	82
38	Exploiting host immunity: the Salmonella paradigm. Trends in Immunology, 2015, 36, 112-120.	2.9	119
39	No Vacancy: How Beneficial Microbes Cooperate with Immunity To Provide Colonization Resistance to Pathogens. Journal of Immunology, 2015, 194, 4081-4087.	0.4	268
40	<i>Salmonella</i> infection inhibits intestinal biotin transport: cellular and molecular mechanisms. American Journal of Physiology - Renal Physiology, 2015, 309, G123-G131.	1.6	11
41	Transition metal ions at the crossroads of mucosal immunity and microbial pathogenesis. Frontiers in Cellular and Infection Microbiology, 2014, 4, 2.	1.8	106
42	mTOR kinase inhibitors promote antibody class switching via mTORC2 inhibition. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5076-85.	3.3	57
43	An intestinal arsonist: pathobiont ignites IBD and flees the scene. Gut, 2014, 63, 1034-1035.	6.1	13
44	Response to Gerlic etÂal Cell Metabolism, 2014, 19, 346-347.	7.2	0
45	Nutritional iron turned inside out: intestinal stress from a gut microbial perspective. FEMS Microbiology Reviews, 2014, 38, 1202-1234.	3.9	219
46	The ZupT transporter plays an important role in zinc homeostasis and contributes to Salmonella enterica virulence. Metallomics, 2014, 6, 845-853.	1.0	55
47	The Cytokine IL-22 Promotes Pathogen Colonization by Suppressing Related Commensal Bacteria. Immunity, 2014, 40, 262-273.	6.6	252
48	Keeping the Peace: Aryl Hydrocarbon Receptor Signaling Modulates the Mucosal Microbiota. Immunity, 2013, 39, 206-207.	6.6	13
49	Probiotic Bacteria Reduce Salmonella Typhimurium Intestinal Colonization by Competing for Iron. Cell Host and Microbe, 2013, 14, 26-37.	5.1	413
50	A Hydrogen Boost for Salmonella. Cell Host and Microbe, 2013, 14, 603-604.	5.1	2
51	Attenuated Salmonella enterica serovar Typhimurium lacking the ZnuABC transporter: An efficacious orally-administered mucosal vaccine against salmonellosis in pigs. Vaccine, 2013, 31, 3695-3701.	1.7	29
52	Circadian clock regulates the host response to <i>Salmonella</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9897-9902.	3.3	216
53	Probiotics: Properties, Examples, and Specific Applications. Cold Spring Harbor Perspectives in Medicine, 2013, 3, a010074-a010074.	2.9	192
54	Uremic Plasma Impairs Barrier Function and Depletes the Tight Junction Protein Constituents of Intestinal Epithelium. American Journal of Nephrology, 2012, 36, 438-443.	1.4	127

#	Article	IF	CITATIONS
55	Zinc Sequestration by the Neutrophil Protein Calprotectin Enhances Salmonella Growth in the Inflamed Gut. Cell Host and Microbe, 2012, 11, 227-239.	5.1	286
56	Linking Lipid Metabolism to the Innate Immune Response in Macrophages through Sterol Regulatory Element Binding Protein-1a. Cell Metabolism, 2011, 13, 540-549.	7.2	275
57	Th17 Cytokines and the Gut Mucosal Barrier. Journal of Clinical Immunology, 2010, 30, 196-203.	2.0	194
58	The <i>Salmonella enterica</i> Serotype Typhi Vi Capsular Antigen Is Expressed after the Bacterium Enters the Ileal Mucosa. Infection and Immunity, 2010, 78, 527-535.	1.0	50
59	Salmonella's iron armor for battling the host and its microbiota. Gut Microbes, 2010, 1, 70-72.	4.3	19
60	Interleukin-23 Orchestrates Mucosal Responses to <i>Salmonella enterica</i> Serotype Typhimurium in the Intestine. Infection and Immunity, 2009, 77, 387-398.	1.0	152
61	Salmonella enterica Typhimurium SipA induces CXC-chemokine expression through p38MAPK and JUN pathways. Microbes and Infection, 2009, 11, 302-310.	1.0	23
62	Salmonella enterica serovar Typhimurium-induced internalization and IL-8 expression in HeLa cells does not have a direct relationship with intracellular Ca2+ levels. Microbes and Infection, 2009, 11, 850-858.	1.0	11
63	Th17 cytokines and host-pathogen interactions at the mucosa: Dichotomies of help and harm. Cytokine, 2009, 48, 156-160.	1.4	59
64	Lipocalin-2 Resistance Confers an Advantage to Salmonella enterica Serotype Typhimurium for Growth and Survival in the Inflamed Intestine. Cell Host and Microbe, 2009, 5, 476-486.	5.1	444
65	Life in the inflamed intestine, Salmonella style. Trends in Microbiology, 2009, 17, 498-506.	3.5	172
66	Simian immunodeficiency virus–induced mucosal interleukin-17 deficiency promotes Salmonella dissemination from the gut. Nature Medicine, 2008, 14, 421-428.	15.2	509
67	The Vi-capsule prevents Toll-like receptor 4 recognition of Salmonella. Cellular Microbiology, 2008, 10, 876-890.	1.1	122
68	T Cells Help To Amplify Inflammatory Responses Induced by <i>Salmonella enterica</i> Serotype Typhimurium in the Intestinal Mucosa. Infection and Immunity, 2008, 76, 2008-2017.	1.0	133
69	Clinical pathogenesis of typhoid fever. Journal of Infection in Developing Countries, 2008, 2, 260-6.	0.5	81
70	The Capsule Encoding the viaB Locus Reduces Interleukin-17 Expression and Mucosal Innate Responses in the Bovine Intestinal Mucosa during Infection with Salmonella enterica Serotype Typhi. Infection and Immunity, 2007, 75, 4342-4350.	1.0	83
71	SIMPLE Approach for Isolating Mutants Expressing Fimbriae. Applied and Environmental Microbiology, 2007, 73, 4455-4462.	1.4	13
72	The Salmonella enterica serotype Typhi regulator TviA reduces interleukin-8 production in intestinal epithelial cells by repressing flagellin secretion. Cellular Microbiology, 2007, 10, 070827234913001-???.	1.1	85

#	Article	IF	CITATIONS
73	Neutrophil influx during non-typhoidal salmonellosis: who is in the driver's seat?. FEMS Immunology and Medical Microbiology, 2006, 46, 320-329.	2.7	38
74	Capsule-Mediated Immune Evasion: a New Hypothesis Explaining Aspects of Typhoid Fever Pathogenesis. Infection and Immunity, 2006, 74, 19-27.	1.0	99
75	CsgA is a pathogen-associated molecular pattern of Salmonella enterica serotype Typhimurium that is recognized by Toll-like receptor 2. Molecular Microbiology, 2005, 58, 289-304.	1.2	153
76	The Vi Capsular Antigen of Salmonella enterica Serotype Typhi Reduces Toll-Like Receptor-Dependent Interleukin-8 Expression in the Intestinal Mucosa. Infection and Immunity, 2005, 73, 3367-3374.	1.0	176
77	Host Restriction of Salmonella enterica Serotype Typhi Is Not Caused by Functional Alteration of SipA, SopB, or SopD. Infection and Immunity, 2005, 73, 7817-7826.	1.0	45
78	SipA, SopA, SopB, SopD, and SopE2 Contribute to Salmonella enterica Serotype Typhimurium Invasion of Epithelial Cells. Infection and Immunity, 2005, 73, 146-154.	1.0	258
79	The use of flow cytometry to detect expression of subunits encoded by 11 Salmonella enterica serotype Typhimurium fimbrial operons. Molecular Microbiology, 2003, 48, 1357-1376.	1.2	156
80	Molecular Pathogenesis of Salmonella enterica Serotype Typhimurium-Induced Diarrhea. Infection and Immunity, 2003, 71, 1-12.	1.0	273
81	Increase in the prevalence of oxolinic acid resistant Acinetobacter spp. observed in a stream receiving the effluent from a freshwater trout farm following the treatment with oxolinic acid-medicated feed. Aquaculture, 2000, 188, 205-218.	1.7	60
82	Mechanisms of Salmonella enterica Serotype Typhimurium Intestinal Colonization. , 0, , 301-312.		1
83	In vivo identification, expression and function of Salmonella virulence genes. , 0, , 173-206.		0