
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7116323/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bulk-driven floating-gate and bulk-driven quasi-floating-gate techniques for low-voltage low-power analog circuits design. AEU - International Journal of Electronics and Communications, 2014, 68, 64-72.	1.7	78
2	Design and implementation of sub 0.5â€V OTAs in 0.18â€Î¼m CMOS. International Journal of Circuit Theory and Applications, 2018, 46, 1129-1143.	1.3	72
3	Single DVCCTA based high frequency incremental/decremental memristor emulator and its application. AEU - International Journal of Electronics and Communications, 2017, 82, 177-190.	1.7	70
4	Fractional-order filters based on low-voltage DDCCs. Microelectronics Journal, 2016, 50, 50-59.	1.1	60
5	A Compact 0.3-V Class AB Bulk-Driven OTA. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2020, 28, 224-232.	2.1	59
6	A 0.3-V 98-dB Rail-to-Rail OTA in \$0.18~mu\$ m CMOS. IEEE Access, 2020, 8, 27459-27467.	2.6	59
7	Low-voltage bulk-driven rectifier for biomedical applications. Microelectronics Journal, 2013, 44, 642-648.	1.1	55
8	Flux-Controlled Memristor Emulator and Its Experimental Results. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2020, 28, 1050-1061.	2.1	53
9	0.4-V bulk-driven differential-difference amplifier. Microelectronics Journal, 2015, 46, 362-369.	1.1	47
10	Novel low-voltage low-power high-precision CCII± based on bulk-driven folded cascode OTA. Microelectronics Journal, 2011, 42, 622-631.	1.1	46
11	The experimental results of the bulk-driven quasi-floating-gate MOS transistor. AEU - International Journal of Electronics and Communications, 2015, 69, 462-466.	1.7	45
12	Multiple-input bulk-driven quasi-floating-gate MOS transistor for low-voltage low-power integrated circuits. AEU - International Journal of Electronics and Communications, 2019, 100, 32-38.	1.7	45
13	Bulk-Driven Current Differencing Transconductance Amplifier. Circuits, Systems, and Signal Processing, 2011, 30, 1071-1089.	1.2	44
14	Design and Implementation of a 0.3-V Differential Difference Amplifier. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, 66, 513-523.	3.5	44
15	Highâ€frequency floating memristor emulator and its experimental results. IET Circuits, Devices and Systems, 2019, 13, 292-302.	0.9	44
16	Multiple-input single-output universal biquad filter using single output operational transconductance amplifiers. AEU - International Journal of Electronics and Communications, 2018, 93, 360-367.	1.7	42
17	Charged Controlled Mem-Element Emulator and Its Application in a Chaotic System. IEEE Access, 2020, 8, 171397-171407.	2.6	41
18	Novel low-voltage ultra-low-power DVCC based on floating-gate folded cascode OTA. Microelectronics Journal, 2011, 42, 1010-1017.	1.1	40

#	Article	IF	CITATIONS
19	Differential Difference Current Conveyor Using Bulk-Driven Technique for Ultra-Low-Voltage Applications. Circuits, Systems, and Signal Processing, 2014, 33, 159-176.	1.2	38
20	Practical Design and Evaluation of Fractional-Order Oscillator Using Differential Voltage Current Conveyors. Circuits, Systems, and Signal Processing, 2016, 35, 2003-2016.	1.2	38
21	Multiple-Input Bulk-Driven MOS Transistor for Low-Voltage Low-Frequency Applications. Circuits, Systems, and Signal Processing, 2019, 38, 2829-2845.	1.2	37
22	Comparative study of sub-volt differential difference current conveyors. Microelectronics Journal, 2013, 44, 1278-1284.	1.1	35
23	Memristor Emulator Circuit Using Multiple-Output OTA and Its Experimental Results. Journal of Circuits, Systems and Computers, 2019, 28, 1950166.	1.0	33
24	Novel Ultra-Low-Power Class AB CCII+ Based on Floating-Gate Folded Cascode OTA. Circuits, Systems, and Signal Processing, 2012, 31, 447-464.	1.2	32
25	Cascadable independently and electronically tunable voltage-mode universal filter with grounded passive components. AEU - International Journal of Electronics and Communications, 2018, 84, 290-299.	1.7	30
26	Design and analysis of floating inductance simulators using VDDDAs and their applications. AEU - International Journal of Electronics and Communications, 2019, 112, 152937.	1.7	30
27	Single-input multiple-output voltage-mode shadow filter based on VDDDAs. AEU - International Journal of Electronics and Communications, 2019, 103, 13-23.	1.7	30
28	Five-inputs single-output voltage mode universal filter with high input and low output impedance using VDDDAs. Optik, 2017, 128, 14-25.	1.4	29
29	Bulkâ€driven adaptively biased OTA in 0.18 μm CMOS. Electronics Letters, 2015, 51, 458-460.	0.5	28
30	Extremely Low-Voltage Bulk-Driven Tunable Transconductor. Circuits, Systems, and Signal Processing, 2017, 36, 511-524.	1.2	28
31	0.3-V Bulk-Driven Nanopower OTA-C Integrator in 0.18µm CMOS. Circuits, Systems, and Signal Processing, 2019, 38, 1333-1341.	1.2	28
32	0.5 V Fifth-Order Butterworth Low-Pass Filter Using Multiple-Input OTA for ECG Applications. Sensors, 2020, 20, 7343.	2.1	28
33	Utilizing the Bulk-driven technique in analog circuit design. , 2010, , .		27
34	Electronically tunable voltage-mode quadrature oscillator based on high performance CCCDBA. Analog Integrated Circuits and Signal Processing, 2013, 74, 499-505.	0.9	27
35	Electronically tunable current-mode biquad filter employing CCCDTAs and grounded capacitors with low input and high output impedance. AEU - International Journal of Electronics and Communications, 2013, 67, 1005-1009.	1.7	25
36	0.5 V fully differential current conveyor using bulkâ€driven quasiâ€floatingâ€gate technique. IET Circuits, Devices and Systems, 2016, 10, 78-86.	0.9	24

#	Article	IF	CITATIONS
37	Mem-Elements Emulator Design With Experimental Validation and Its Application. IEEE Access, 2021, 9, 69860-69875.	2.6	24
38	Single Commercially Available IC-Based Electronically Controllable Voltage-Mode First-Order Multifunction Filter with Complete Standard Functions and Low Output Impedance. Sensors, 2021, 21, 7376.	2.1	24
39	1ÂV Rectifier Based on Bulk-Driven Quasi-Floating-Gate Differential Difference Amplifiers. Circuits, Systems, and Signal Processing, 2015, 34, 2077-2089.	1.2	22
40	Capacitorless digitally programmable fractional-order filters. AEU - International Journal of Electronics and Communications, 2017, 78, 228-237.	1.7	22
41	Shadow filters based on DDCC. IET Circuits, Devices and Systems, 2017, 11, 631-637.	0.9	22
42	Mixed-Mode Third-Order Quadrature Oscillator Based on Single MCCFTA. Radioengineering, 2017, 26, 522-535.	0.3	22
43	Universal Filter Based on Compact CMOS Structure of VDDDA. Sensors, 2021, 21, 1683.	2.1	22
44	Comparative performance study of multiple-input bulk-driven and multiple-input bulk-driven quasi-floating-gate DDCCs. AEU - International Journal of Electronics and Communications, 2019, 108, 19-28.	1.7	19
45	Multiple-Input Universal Filter and Quadrature Oscillator Using Multiple-Input Operational Transconductance Amplifiers. IEEE Access, 2021, 9, 56253-56263.	2.6	19
46	High-Precision Differential-Input Buffered and External Transconductance Amplifier for Low-Voltage Low-Power Applications. Circuits, Systems, and Signal Processing, 2013, 32, 453-476.	1.2	18
47	0.5†V sixth-order Chebyshev band-pass filter based on multiple-input bulk-driven OTA. AEU - International Journal of Electronics and Communications, 2019, 111, 152930.	1.7	18
48	0.3V Bulk-Driven Current Conveyor. IEEE Access, 2019, 7, 65122-65128.	2.6	18
49	0.5 V Fully Differential Universal Filter Based on Multiple Input OTAs. IEEE Access, 2020, 8, 187832-187839.	2.6	18
50	Nanopower multiple-input DTMOS OTA and its applications to high-order filters for biomedical systems. AEU - International Journal of Electronics and Communications, 2021, 130, 153576.	1.7	17
51	Sub-Volt Fully Balanced Differential Difference Amplifier. Journal of Circuits, Systems and Computers, 2015, 24, 1550005.	1.0	16
52	A 0.3-V 37-nW 53-dB SNDR Asynchronous Delta–Sigma Modulator in 0.18- <inline-formula> <tex-math notation="LaTeX">\$mu\$ </tex-math> </inline-formula> m CMOS. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2019, 27, 316-325.	2.1	16
53	Inductance Simulators and Their Application to the 4th Order Elliptic Lowpass Ladder Filter Using CMOS VD-DIBAs. Electronics (Switzerland), 2021, 10, 684.	1.8	16
54	0.5-V High Linear and Wide Tunable OTA for Biomedical Applications. IEEE Access, 2021, 9, 103784-103794.	2.6	16

#	Article	IF	CITATIONS
55	Voltage-Mode Elliptic Band-Pass Filter Based on Multiple-Input Transconductor. IEEE Access, 2021, 9, 32582-32590.	2.6	16
56	MIOTA-Based Filters for Noise and Motion Artifact Reductions in Biosignal Acquisition. IEEE Access, 2022, 10, 14325-14338.	2.6	16
57	ULTRA-LOW VOLTAGE TUNABLE TRANSCONDUCTOR BASED ON BULK-DRIVEN QUASI-FLOATING-GATE TECHNIQUE. Journal of Circuits, Systems and Computers, 2013, 22, 1350073.	1.0	15
58	Lowâ€voltage fully differential difference transconductance amplifier. IET Circuits, Devices and Systems, 2018, 12, 73-81.	0.9	15
59	Automatic tuning circuit for bulkâ€controlled subthreshold MOS resistors. Electronics Letters, 2014, 50, 432-434.	0.5	14
60	Digitally programmable low-voltage highly linear transconductor based on promising CMOS structure of differential difference current conveyor. AEU - International Journal of Electronics and Communications, 2015, 69, 1010-1017.	1.7	14
61	Four-Input One-Output Voltage-Mode Universal Filter Using Simple OTAs. Journal of Circuits, Systems and Computers, 2019, 28, 1950078.	1.0	14
62	A 0.3-V High Linear Rail-to-Rail Bulk-Driven OTA in 0.13 μm CMOS. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 2046-2050.	2.2	14
63	Current-mode universal filter and quadrature oscillator using current controlled current follower transconductance amplifiers. Analog Integrated Circuits and Signal Processing, 2019, 100, 235-248.	0.9	13
64	A 0.5-V 95-dB rail-to-rail DDA for biosignal processing. AEU - International Journal of Electronics and Communications, 2022, 145, 154098.	1.7	13
65	0.5 V Differential Difference Transconductance Amplifier and Its Application in Voltage-Mode Universal Filter. IEEE Access, 2022, 10, 43209-43220.	2.6	13
66	An energy-efficient DAC switching algorithm based on charge recycling method for SAR ADCs. Microelectronics Journal, 2018, 82, 29-35.	1.1	12
67	0.5â€V bulk ―driven CMOS fully differential current feedback operational amplifier. IET Circuits, Devices and Systems, 2019, 13, 314-320.	0.9	12
68	0.3-V Nanopower Biopotential Low-Pass Filter. IEEE Access, 2020, 8, 119586-119593.	2.6	12
69	0.5 V Current-Mode Low-Pass Filter Based on Voltage Second Generation Current Conveyor for Bio-Sensor Applications. IEEE Access, 2022, 10, 12201-12207.	2.6	11
70	Extremely low-voltage low-power differential difference current conveyor using multiple-input bulk-driven technique. AEU - International Journal of Electronics and Communications, 2020, 123, 153310.	1.7	10
71	Synthesis of biquad filters using two VD-DIBAs with independent control of quality factor and natural frequency. AEU - International Journal of Electronics and Communications, 2021, 132, 153601.	1.7	10
72	0.3-Volt Rail-to-Rail DDTA and Its Application in a Universal Filter and Quadrature Oscillator. Sensors, 2022, 22, 2655.	2.1	10

#	Article	IF	CITATIONS
73	1.2 V Differential Difference Transconductance Amplifier and Its Application in Mixed-Mode Universal Filter. Sensors, 2022, 22, 3535.	2.1	10
74	Fully differential difference transconductance amplifier using FG-MOS transistors. , 2015, , .		9
75	Sub 0.5-V bulk-driven winner take all circuit based on a new voltage follower. Analog Integrated Circuits and Signal Processing, 2017, 90, 687-691.	0.9	9
76	0.3â€V bulkâ€driven programmable gain amplifier in 0.18â€Âµm CMOS. International Journal of Circuit Theory and Applications, 2017, 45, 1077-1094.	1.3	9
77	0.5ÂV Universal Filter Based on Multiple-Input FDDAs. Circuits, Systems, and Signal Processing, 2019, 38, 5896-5907.	1.2	9
78	Bulk-driven fully balanced second-generation current conveyor in 0.18â€ [−] µm CMOS. AEU - International Journal of Electronics and Communications, 2019, 104, 66-75.	1.7	9
79	0.3ÂV Differential Difference Current Conveyor Using Multiple-Input Bulk-Driven Technique. Circuits, Systems, and Signal Processing, 2020, 39, 3189-3205.	1.2	9
80	Sub 0.5-V bulk-driven LTA in 0.18 μm CMOS. AEU - International Journal of Electronics and Communications, 2017, 77, 67-75.	1.7	8
81	Fullyâ€balanced fourâ€ŧerminal floating nullor for ultraâ€ŀow voltage analogue filter design. IET Circuits, Devices and Systems, 2017, 11, 173-182.	0.9	8
82	Electronically Tunable Universal Filter and Quadrature Oscillator Using Low-Voltage Differential Difference Transconductance Amplifiers. IEEE Access, 2022, 10, 68965-68980.	2.6	8
83	Low-Voltage Diode-Less Rectifier Based on Fully Differential Difference Transconductance Amplifier. Journal of Circuits, Systems and Computers, 2017, 26, 1750172.	1.0	7
84	Lowâ€power sample and hold circuits using current conveyor analogue switches. IET Circuits, Devices and Systems, 2018, 12, 397-402.	0.9	7
85	CMOS Class AB Second Generation Voltage Conveyor. , 2019, , .		6
86	Fully differential fifth-order dual-notch low-pass filter for portable EEG system. AEU - International Journal of Electronics and Communications, 2022, 146, 154122.	1.7	6
87	0.5-V DTMOS median filter. AEU - International Journal of Electronics and Communications, 2015, 69, 1733-1736.	1.7	5
88	Low-voltage low-power bulk-driven analog median filter. AEU - International Journal of Electronics and Communications, 2016, 70, 698-706.	1.7	5
89	An On-Chip Linear, Squaring, Cubic and Exponential Analog Function Generator. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, 66, 94-104.	3.5	5
90	A compact power-efficient 0.5†V fully differential difference amplifier. AEU - International Journal of Electronics and Communications, 2019, 105, 71-77.	1.7	5

#	Article	IF	CITATIONS
91	Current-controlled square/triangular wave generator with MO-CCDVCC. , 2013, , .		4
92	Ultra-low voltage CMOS current-mode four-quadrant multiplier. International Journal of Electronics Letters, 2014, 2, 224-233.	0.7	4
93	A digitally programmable gain amplifier for ultra-low-power applications. Analog Integrated Circuits and Signal Processing, 2015, 85, 433-443.	0.9	4
94	A low-voltage and low-power multiple-input floating-gate FDCCII. , 2015, , .		4
95	Bulk-driven class AB fully-balanced differential difference amplifier. Analog Integrated Circuits and Signal Processing, 2017, 93, 179-187.	0.9	4
96	New bulk-driven class AB CCII. , 2011, , .		3
97	0.5-V bulk-driven second-generation current conveyor. , 2014, , .		3
98	Novel current controlled differential-input buffered output active element and its application in all-pass filter. , 2015, , .		3
99	1-V Inverting and Non-inverting Loser-Take-All Circuit and Its Applications. Circuits, Systems, and Signal Processing, 2016, 35, 1507-1529.	1.2	3
100	Active-only variable-gain low-pass filter for dual-mode multiphase sinusoidal oscillator application. Turkish Journal of Electrical Engineering and Computer Sciences, 2017, 25, 4326-4340.	0.9	3
101	Extremely Low-Power Fifth-Order Low-Pass Butterworth Filter. , 2021, , .		3
102	SUB-VOLT BULK-DRIVEN FULLY DIFFERENTIAL CURRENT CONVEYOR AND ITS APPLICATIONS. Far East Journal of Electronics and Communications, 2018, 18, 809-827.	0.2	3
103	0.5-V bulk-driven fully differential current conveyor. , 2014, , .		2
104	Differential second-generation current conveyor for ultra-low voltage applications. , 2014, , .		2
105	0.8-V floating-gate differential difference current feedback operational amplifier. , 2014, , .		2
106	0.5-V fully differential allpass section. , 2016, , .		2
107	Sub-Volt Bulk-Driven Transconductance Amplifier and Filter Application. , 2018, , .		2

108 Simple Structure OTA-C Elliptic Band-pass Filter. , 2019, , .

2

#	ARTICLE	IF	CITATIONS
109	Design of High Input Impedance Voltage-mode Multifunction Biquad Filter with Independent Control of Natural Frequency and Quality Factor. , 2020, , .		2
110	SC ΣΔ converter for vibration sensor processing system. , 2013, , .		1
111	0.5ÂV bulk-driven ring amplifier based on master–slave technique. Analog Integrated Circuits and Signal Processing, 2017, 90, 189-197.	0.9	1
112	0.5-V bulk-driven quasi-floating gate transconductance amplifier. , 2017, , .		1
113	Arbitrary Waveform Generators Using Current-Controlled Current Conveyor Transconductance Amplifier and Current Conveyor Analog Switches. Journal of Circuits, Systems and Computers, 2019, 28, 1950179.	1.0	1
114	LOW-VOLTAGE LOW-POWER SECOND-GENERATION CURRENT CONVEYOR AND ITS APPLICATIONS. Far East Journal of Electronics and Communications, 2018, 18, 489-506.	0.2	1
115	Comment on "High performance low-voltage QFG-based DVCC and a novel fully differential SC integrator based on it― IEICE Electronics Express, 2012, 9, 1492-1493.	0.3	0
116	Guest Editorial: Low-Voltage Integrated Circuits and Systems. Circuits, Systems, and Signal Processing, 2017, 36, 4769-4773.	1.2	0
117	Guest Editorial: Low Voltage Low Power Integrated Circuits and Systems. IET Circuits, Devices and Systems, 2018, 12, 669-670.	0.9	Ο
118	A 0.5-V Bulk-Driven Active Voltage Attenuator. Circuits, Systems, and Signal Processing, 2019, 38, 5883-5895.	1.2	0
119	Guest Editorial: Special issue on low voltage low power integrated circuits and systems. Microelectronics Journal, 2020, 95, 104674.	1.1	0
120	Quadrature oscillator based on novel low-voltage ultra-low-power quasi-floating-gate DVCC. Scientia Iranica, 2017, .	0.3	0
121	1.2 V Differential Difference Current Conveyor Using MIGD MOST Technique. , 2022, , .		0