Peng Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7116179/publications.pdf

Version: 2024-02-01

43 3,073 29
papers citations h-inc

29 43
h-index g-index

44 44 all docs citations

44 times ranked 3400 citing authors

#	Article	IF	CITATIONS
1	Changes in gut viral and bacterial species correlate with altered 1,2-diacylglyceride levels and structure in the prefrontal cortex in a depression-like non-human primate model. Translational Psychiatry, 2022, 12, 74.	4.8	14
2	The gut microbiome modulates gut–brain axis glycerophospholipid metabolism in a region-specific manner in a nonhuman primate model of depression. Molecular Psychiatry, 2021, 26, 2380-2392.	7.9	102
3	An integrated meta-analysis of peripheral blood metabolites and biological functions in major depressive disorder. Molecular Psychiatry, 2021, 26, 4265-4276.	7.9	119
4	Dynamic changes occur in the DNA gut virome of female cynomolgus macaques during aging. MicrobiologyOpen, 2021, 10, e1186.	3.0	4
5	Characterization of gut microbiome in mice model of depression with divergent response to escitalopram treatment. Translational Psychiatry, 2021, 11, 303.	4.8	48
6	Based on UPLC-Q-TOF-MS/MS, Systematic Network Pharmacology, and Molecular Docking to Explore the Potential Mechanism of Fructus Aurantii for Major Depression Disorder. Evidence-based Complementary and Alternative Medicine, 2021, 2021, 1-11.	1.2	5
7	Pigment epithelium-derived factor alleviates depressive-like behaviors in mice by modulating adult hippocampal synaptic growth and Wnt pathway. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2020, 98, 109792.	4.8	10
8	Hippocampus-specific regulation of long non-coding RNA and mRNA expression in germ-free mice. Functional and Integrative Genomics, 2020, 20, 355-365.	3.5	16
9	Landscapes of bacterial and metabolic signatures and their interaction in major depressive disorders. Science Advances, 2020, 6, .	10.3	178
10	Circulating microRNA 134 sheds light on the diagnosis of major depressive disorder. Translational Psychiatry, 2020, 10, 95.	4.8	41
11	Gut Microbial Signatures Can Discriminate Unipolar from Bipolar Depression. Advanced Science, 2020, 7, 1902862.	11.2	99
12	Perturbed Microbial Ecology in Myasthenia Gravis: Evidence from the Gut Microbiome and Fecal Metabolome. Advanced Science, 2019, 6, 1901441.	11.2	55
13	Proteomic analysis of the intestine reveals SNARE-mediated immunoregulatory and amino acid absorption perturbations in a rat model of depression. Life Sciences, 2019, 234, 116778.	4.3	13
14	Clostridium butyricum miyairi 588 has preventive effects on chronic social defeat stress-induced depressive-like behaviour and modulates microglial activation in mice. Biochemical and Biophysical Research Communications, 2019, 516, 430-436.	2.1	51
15	Effects of chronic stress on intestinal amino acid pathways. Physiology and Behavior, 2019, 204, 199-209.	2.1	11
16	Absence of gut microbiota during early life affects anxiolytic Behaviors and monoamine neurotransmitters system in the hippocampal of mice. Journal of the Neurological Sciences, 2019, 400, 160-168.	0.6	33
17	The gut microbiome from patients with schizophrenia modulates the glutamate-glutamine-GABA cycle and schizophrenia-relevant behaviors in mice. Science Advances, 2019, 5, eaau8317.	10.3	446
18	Age-specific urinary metabolite signatures and functions in patients with major depressive disorder. Aging, 2019, 11, 6626-6637.	3.1	27

#	Article	IF	Citations
19	Age-related changes in microbial composition and function in cynomolgus macaques. Aging, 2019, 11, 12080-12096.	3.1	25
20	Metabolite identification in fecal microbiota transplantation mouse livers and combined proteomics with chronic unpredictive mild stress mouse livers. Translational Psychiatry, 2018, 8, 34.	4.8	70
21	Gut microbiota regulates mouse behaviors through glucocorticoid receptor pathway genes in the hippocampus. Translational Psychiatry, 2018, 8, 187.	4.8	174
22	Diagnosis of major depressive disorder based on changes in multiple plasma neurotransmitters: a targeted metabolomics study. Translational Psychiatry, 2018, 8, 130.	4.8	152
23	Effects of gut microbiota on the microRNA and mRNA expression in the hippocampus of mice. Behavioural Brain Research, 2017, 322, 34-41.	2.2	77
24	Differential urinary metabolites related with the severity of major depressive disorder. Behavioural Brain Research, 2017, 332, 280-287.	2.2	59
25	Predictive diagnosis of major depression using NMR-based metabolomics and least-squares support vector machine. Clinica Chimica Acta, 2017, 464, 223-227.	1.1	49
26	Plasma lipidomics reveals potential lipid markers of major depressive disorder. Analytical and Bioanalytical Chemistry, 2016, 408, 6497-6507.	3.7	95
27	Metabolite signature for diagnosing major depressive disorder in peripheral blood mononuclear cells. Journal of Affective Disorders, 2016, 195, 75-81.	4.1	45
28	Severe disturbance of glucose metabolism in peripheral blood mononuclear cells of schizophrenia patients: a targeted metabolomic study. Journal of Translational Medicine, 2015, 13, 226.	4.4	50
29	Macaques Exhibit a Naturally-Occurring Depression Similar to Humans. Scientific Reports, 2015, 5, 9220.	3.3	39
30	Discovery and Validation of Plasma Biomarkers for Major Depressive Disorder Classification Based on Liquid Chromatography–Mass Spectrometry. Journal of Proteome Research, 2015, 14, 2322-2330.	3.7	152
31	Elevated host lipid metabolism revealed by iTRAQ-based quantitative proteomic analysis of cerebrospinal fluid of tuberculous meningitis patients. Biochemical and Biophysical Research Communications, 2015, 466, 689-695.	2.1	18
32	Urinary peptidomics identifies potential biomarkers for major depressive disorder. Psychiatry Research, 2014, 217, 25-33.	3.3	36
33	Dynamic 1H NMR-based extracellular metabonomic analysis of oligodendroglia cells infected with herpes simplex virus type 1. Metabolomics, 2014, 10, 33-41.	3.0	3
34	2,4-Dihydroxypyrimidine is a potential urinary metabolite biomarker for diagnosing bipolar disorder. Molecular BioSystems, 2014, 10, 813.	2.9	41
35	Combined Application of NMR- and GC-MS-Based Metabonomics Yields a Superior Urinary Biomarker Panel for Bipolar Disorder. Scientific Reports, 2014, 4, 5855.	3.3	65
36	Glutamate and Lipid Metabolic Perturbation in the Hippocampi of Asymptomatic Borna Disease Virus-Infected Horses. PLoS ONE, 2014, 9, e99752.	2.5	8

PENG ZHENG

#	Article	IF	CITATION
37	Sex-Specific Urinary Biomarkers for Diagnosing Bipolar Disorder. PLoS ONE, 2014, 9, e115221.	2.5	27
38	Novel urinary biomarkers for diagnosing bipolar disorder. Metabolomics, 2013, 9, 800-808.	3.0	33
39	Peripheral metabolic abnormalities of lipids and amino acids implicated in increased risk of suicidal behavior in major depressive disorder. Metabolomics, 2013, 9, 688-696.	3.0	25
40	A Novel Urinary Metabolite Signature for Diagnosing Major Depressive Disorder. Journal of Proteome Research, 2013, 12, 5904-5911.	3.7	98
41	Metabolomic identification of molecular changes associated with stress resilience in the chronic mild stress rat model of depression. Metabolomics, 2013, 9, 433-443.	3.0	58
42	Identification and Validation of Urinary Metabolite Biomarkers for Major Depressive Disorder. Molecular and Cellular Proteomics, 2013, 12, 207-214.	3.8	198
43	Plasma Metabonomics as a Novel Diagnostic Approach for Major Depressive Disorder. Journal of Proteome Research, 2012, 11, 1741-1748.	3.7	204