Kelong Ai

List of Publications by Citations

Source: https://exaly.com/author-pdf/7115785/kelong-ai-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

68 67 38 11,372 h-index g-index citations papers 68 6.79 12,912 11.9 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
67	Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. <i>Chemical Reviews</i> , 2014 , 114, 5057-115	68.1	3034
66	Dopamine-melanin colloidal nanospheres: an efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy. <i>Advanced Materials</i> , 2013 , 25, 1353-9	24	1337
65	Sp2 C-dominant N-doped carbon sub-micrometer spheres with a tunable size: a versatile platform for highly efficient oxygen-reduction catalysts. <i>Advanced Materials</i> , 2013 , 25, 998-1003	24	690
64	Hydrogen-bonding recognition-induced color change of gold nanoparticles for visual detection of melamine in raw milk and infant formula. <i>Journal of the American Chemical Society</i> , 2009 , 131, 9496-7	16.4	525
63	A superhydrophobic sponge with excellent absorbency and flame retardancy. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 5556-60	16.4	378
62	Gold-Nanocluster-Based Fluorescent Sensors for Highly Sensitive and Selective Detection of Cyanide in Water. <i>Advanced Functional Materials</i> , 2010 , 20, 951-956	15.6	370
61	Large-Area Silver-Coated Silicon Nanowire Arrays for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy. <i>Advanced Functional Materials</i> , 2008 , 18, 2348-2355	15.6	322
60	A high-performance ytterbium-based nanoparticulate contrast agent for in vivo X-ray computed tomography imaging. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 1437-42	16.4	288
59	Large-scale synthesis of Bi(2)S(3) nanodots as a contrast agent for in vivo X-ray computed tomography imaging. <i>Advanced Materials</i> , 2011 , 23, 4886-91	24	266
58	MoS2 Nanosheets with Widened Interlayer Spacing for High-Efficiency Removal of Mercury in Aquatic Systems. <i>Advanced Functional Materials</i> , 2016 , 26, 5542-5549	15.6	257
57	Comprehensive Insights into the Multi-Antioxidative Mechanisms of Melanin Nanoparticles and Their Application To Protect Brain from Injury in Ischemic Stroke. <i>Journal of the American Chemical Society</i> , 2017 , 139, 856-862	16.4	254
56	Nanoparticulate X-ray computed tomography contrast agents: from design validation to in vivo applications. <i>Accounts of Chemical Research</i> , 2012 , 45, 1817-27	24.3	248
55	Covalent entrapment of cobalt-iron sulfides in N-doped mesoporous carbon: extraordinary bifunctional electrocatalysts for oxygen reduction and evolution reactions. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 1207-18	9.5	243
54	Dual-emission fluorescent silica nanoparticle-based probe for ultrasensitive detection of Cu2+. <i>Analytical Chemistry</i> , 2011 , 83, 3126-32	7.8	215
53	A novel strategy for making soluble reduced graphene oxide sheets cheaply by adopting an endogenous reducing agent. <i>Journal of Materials Chemistry</i> , 2011 , 21, 3365-3370		193
52	Europium-based fluorescence nanoparticle sensor for rapid and ultrasensitive detection of an anthrax biomarker. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 304-8	16.4	177
51	Targeted polydopamine nanoparticles enable photoacoustic imaging guided chemo-photothermal synergistic therapy of tumor. <i>Acta Biomaterialia</i> , 2017 , 47, 124-134	10.8	170

(2011-2011)

50	Designing lanthanide-doped nanocrystals with both up- and down-conversion luminescence for anti-counterfeiting. <i>Nanoscale</i> , 2011 , 3, 4804-10	7.7	169
49	Fluorescence-enhanced gadolinium-doped zinc oxide quantum dots for magnetic resonance and fluorescence imaging. <i>Biomaterials</i> , 2011 , 32, 1185-92	15.6	169
48	Controlling the formation of rodlike V2O5 nanocrystals on reduced graphene oxide for high-performance supercapacitors. <i>ACS Applied Materials & District Research Action (Control of the Control of the C</i>	9.5	154
47	Multifunctional envelope-type mesoporous silica nanoparticles for pH-responsive drug delivery and magnetic resonance imaging. <i>Biomaterials</i> , 2015 , 60, 111-20	15.6	152
46	Polydopamine-based coordination nanocomplex for T1/T2 dual mode magnetic resonance imaging-guided chemo-photothermal synergistic therapy. <i>Biomaterials</i> , 2016 , 77, 198-206	15.6	150
45	Functionalizing metal nanostructured film with graphene oxide for ultrasensitive detection of aromatic molecules by surface-enhanced Raman spectroscopy. <i>ACS Applied Materials & Materials & Interfaces</i> , 2011 , 3, 2944-52	9.5	144
44	Transition metalBitrogenBarbon nanostructured catalysts for the oxygen reduction reaction: From mechanistic insights to structural optimization. <i>Nano Research</i> , 2017 , 10, 1449-1470	10	122
43	Monitoring catalytic degradation of dye molecules on silver-coated ZnO nanowire arrays by surface-enhanced Raman spectroscopy. <i>Journal of Materials Chemistry</i> , 2009 , 19, 5547		119
42	Environmentally friendly synthesis of highly monodisperse biocompatible gold nanoparticles with urchin-like shape. <i>Langmuir</i> , 2008 , 24, 1058-63	4	116
41	Plasmonic titanium nitride nanoparticles for in vivo photoacoustic tomography imaging and photothermal cancer therapy. <i>Biomaterials</i> , 2017 , 132, 37-47	15.6	98
40	Biomass-derived carbon materials for high-performance supercapacitor electrodes. <i>RSC Advances</i> , 2014 , 4, 30887	3.7	81
39	Hybrid BaYbF(5) nanoparticles: novel binary contrast agent for high-resolution in vivo X-ray computed tomography angiography. <i>Advanced Healthcare Materials</i> , 2012 , 1, 461-6	10.1	80
38	High-performance oxygen reduction electrocatalysts derived from uniform cobalt denine assemblies. <i>Nano Energy</i> , 2015 , 17, 120-130	17.1	53
37	Scalable preparation of sized-controlled Co-N-C electrocatalyst for efficient oxygen reduction reaction. <i>Journal of Power Sources</i> , 2017 , 368, 46-56	8.9	50
36	A Superhydrophobic Sponge with Excellent Absorbency and Flame Retardancy. <i>Angewandte Chemie</i> , 2014 , 126, 5662-5666	3.6	49
35	Inorganic layered ion-exchangers for decontamination of toxic metal ions in aquatic systems. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 19593-19606	13	47
34	Synergistic Tailoring of Electrostatic and Hydrophobic Interactions for Rapid and Specific Recognition of Lysophosphatidic Acid, an Early-Stage Ovarian Cancer Biomarker. <i>Journal of the American Chemical Society</i> , 2017 , 139, 11616-11621	16.4	46
33	Gd(III) functionalized gold nanorods for multimodal imaging applications. <i>Nanoscale</i> , 2011 , 3, 1990-6	7.7	44

32	MoS-based nanocomposites for cancer diagnosis and therapy. <i>Bioactive Materials</i> , 2021 , 6, 4209-4242	16.7	42
31	Europium-Based Fluorescence Nanoparticle Sensor for Rapid and Ultrasensitive Detection of an Anthrax Biomarker. <i>Angewandte Chemie</i> , 2009 , 121, 310-314	3.6	40
30	Tailor-made charge-conversional nanocomposite for pH-responsive drug delivery and cell imaging. <i>ACS Applied Materials & Description of the ACS Applied Ma</i>	9.5	38
29	Flame-retardant porous hexagonal boron nitride for safe and effective radioactive iodine capture. Journal of Materials Chemistry A, 2019 , 7, 16850-16858	13	36
28	Fluorescence visual gel-separation of dansylated BSA-protected gold-nanoclusters. <i>Chemical Communications</i> , 2011 , 47, 9852-4	5.8	36
27	Recent advances in ytterbium-based contrast agents for in vivo X-ray computed tomography imaging: promises and prospects. <i>Contrast Media and Molecular Imaging</i> , 2014 , 9, 26-36	3.2	34
26	Nanoparticulate X-ray CT contrast agents. Science China Chemistry, 2015, 58, 753-760	7.9	33
25	Reactive oxygen species-based nanomaterials for the treatment of myocardial ischemia reperfusion injuries. <i>Bioactive Materials</i> , 2022 , 7, 47-72	16.7	33
24	Hydrogen bond-mediated strong adsorbent Bunteractions enable high-efficiency radioiodine capture. <i>Materials Horizons</i> , 2019 , 6, 1517-1525	14.4	27
23	Coating didodecyldimethylammonium bromide onto Au nanoparticles increases the stability of its complex with DNA. <i>Journal of Controlled Release</i> , 2008 , 129, 128-34	11.7	27
22	Targeted Imaging of Damaged Bone in Vivo with Gemstone Spectral Computed Tomography. <i>ACS Nano</i> , 2016 , 10, 4164-72	16.7	24
21	Transformation from FeS/Fe3C nanoparticles encased S, N dual doped carbon nanotubes to nanosheets for enhanced oxygen reduction performance. <i>Carbon</i> , 2017 , 123, 135-144	10.4	23
20	Engineering natural materials as surface-enhanced Raman spectroscopy substrates for in situ molecular sensing. <i>ACS Applied Materials & Acs Applied Materials & Acc Applied Ma</i>	9.5	23
19	A Versatile and Scalable Approach toward Robust Superhydrophobic Porous Materials with Excellent Absorbency and Flame Retardancy. <i>Scientific Reports</i> , 2016 , 6, 31233	4.9	21
18	Localized surface plasmon resonance properties and biomedical applications of copper selenide nanomaterials. <i>Materials Today Chemistry</i> , 2021 , 20, 100402	6.2	19
17	A High-Performance Ytterbium-Based Nanoparticulate Contrast Agent for In Vivo X-Ray Computed Tomography Imaging. <i>Angewandte Chemie</i> , 2012 , 124, 1466-1471	3.6	17
16	Untrasmall Bi2S3 nanodots for in vivo X-ray CT imaging-guided photothermal therapy of cancer. <i>RSC Advances</i> , 2017 , 7, 29672-29678	3.7	13
15	Point-and-Shoot Strategy for Identification of Alcoholic Beverages. <i>Analytical Chemistry</i> , 2018 , 90, 9838	8- 9 844	12

LIST OF PUBLICATIONS

14	Nanotherapies for sepsis by regulating inflammatory signals and reactive oxygen and nitrogen species: New insight for treating COVID-19. <i>Redox Biology</i> , 2021 , 45, 102046	11.3	12
13	ROS-Scavenging Nanomaterials to Treat Periodontitis. <i>Frontiers in Chemistry</i> , 2020 , 8, 595530	5	11
12	Highly Sensitive Polydiacetylene Ensembles for Biosensing and Bioimaging. <i>Frontiers in Chemistry</i> , 2020 , 8, 565782	5	11
11	Rheumatoid arthritis microenvironment insights into treatment effect of nanomaterials. <i>Nano Today</i> , 2022 , 42, 101358	17.9	8
10	Harnessing reactive oxygen/nitrogen species and inflammation: Nanodrugs for liver injury <i>Materials Today Bio</i> , 2022 , 13, 100215	9.9	4
9	Nanomaterial-based biosensor developing as a route toward in vitro diagnosis of early ovarian cancer <i>Materials Today Bio</i> , 2022 , 13, 100218	9.9	4
8	sp2 C-Dominant O-Doped Hierarchical Porous Carbon for Supercapacitor Electrodes. <i>ACS Applied Energy Materials</i> , 2019 , 2, 7009-7018	6.1	3
7	Dual-protective nano-sunscreen enables high-efficient elimination of the self-derived hazards. <i>Applied Materials Today</i> , 2020 , 18, 100493	6.6	3
6	Progress in Detection of Biomarker of Ovarian Cancer: Lysophosphatidic Acid. <i>Chinese Journal of Analytical Chemistry</i> , 2020 , 48, 1597-1606	1.6	2
5	Hierarchically porous polymers with ultra-high affinity for bisphenol A enables high efficient water purification. <i>Science China Chemistry</i> , 2021 , 64, 1389-1400	7.9	2
4	Robust Synthesis of High-Performance N-Graphite Hollow Nanocatalysts Based on the Ostwald Ripening Mechanism for Oxygen Reduction Reaction Electrocatalysis. <i>Particle and Particle Systems Characterization</i> , 2018 , 35, 1800266	3.1	1
3	Emerging Bismuth Chalcogenides Based Nanodrugs for Cancer Radiotherapy <i>Frontiers in Pharmacology</i> , 2022 , 13, 844037	5.6	1
2	Emerging early diagnostic methods for acute kidney injury <i>Theranostics</i> , 2022 , 12, 2963-2986	12.1	O
1	Toward Urease-free wearable artificial kidney: Widened interlayer spacing MoS2 nanosheets with highly effective adsorption for uremic toxins. <i>Chemical Engineering Journal</i> , 2022 , 438, 135583	14.7	0