Benoît H Lessard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7115697/publications.pdf

Version: 2024-02-01

131 papers 3,318 citations

30 h-index 197818 49 g-index

136 all docs

136 docs citations

136 times ranked 2670 citing authors

#	Article	IF	CITATIONS
1	Phthalocyanine-Based Organic Thin-Film Transistors: A Review of Recent Advances. ACS Applied Materials & Discrete Services, 2015, 7, 13105-13118.	8.0	289
2	High Performance Near-Infrared (NIR) Photoinitiating Systems Operating under Low Light Intensity and in the Presence of Oxygen. Macromolecules, 2018, 51, 1314-1324.	4.8	152
3	Two-Dimensional Structural Motif in Thienoacene Semiconductors: Synthesis, Structure, and Properties of Tetrathienoanthracene Isomers. Chemistry of Materials, 2008, 20, 2484-2494.	6.7	144
4	Bis(tri- <i>n</i> -hexylsilyl oxide) Silicon Phthalocyanine: A Unique Additive in Ternary Bulk Heterojunction Organic Photovoltaic Devices. ACS Applied Materials & Eamp; Interfaces, 2014, 6, 15040-15051.	8.0	71
5	Fluorescent, Thermoresponsive Oligo(ethylene glycol) Methacrylate/9-(4-Vinylbenzyl)-9 <i>H</i> -carbazole Copolymers Designed with Multiple LCSTs via Nitroxide Mediated Controlled Radical Polymerization. Macromolecules, 2012, 45, 1879-1891.	4.8	64
6	Photoinduced Thermal Polymerization Reactions. Macromolecules, 2018, 51, 8808-8820.	4.8	63
7	Metal phthalocyanines: thin-film formation, microstructure, and physical properties. RSC Advances, 2021, 11, 21716-21737.	3.6	63
8	Nitroxide-Mediated Synthesis of Poly(poly(ethylene glycol) acrylate) (PPEGA) Comb-Like Homopolymers and Block Copolymers. Macromolecules, 2008, 41, 7870-7880.	4.8	60
9	One-Step Poly(styrene-alt-maleic anhydride)-block-poly(styrene) Copolymers with Highly Alternating Styrene/Maleic Anhydride Sequences Are Possible by Nitroxide-Mediated Polymerization. Macromolecules, 2010, 43, 879-885.	4.8	59
10	Assessing the Potential Roles of Silicon and Germanium Phthalocyanines in Planar Heterojunction Organic Photovoltaic Devices and How Pentafluoro Phenoxylation Can Enhance π–Ĭ€ Interactions and Device Performance. ACS Applied Materials & Device Performance. ACS Applied Materials & Device Performance.	8.0	58
11	Nitroxide-Mediated Polymerization: A Versatile Tool for the Engineering of Next Generation Materials. ACS Applied Polymer Materials, 2020, 2, 5327-5344.	4.4	58
12	Styrene/Acrylic Acid Random Copolymers Synthesized by Nitroxide-Mediated Polymerization: Effect of Free Nitroxide on Kinetics and Copolymer Composition. Macromolecules, 2008, 41, 3446-3454.	4.8	54
13	Boron Subphthalocyanines and Silicon Phthalocyanines for Use as Active Materials in Organic Photovoltaics. Chemical Record, 2019, 19, 1093-1112.	5.8	54
14	Layer-by-layer fabrication of organic photovoltaic devices: material selection and processing conditions. Journal of Materials Chemistry C, 2021, 9, 14-40.	5 . 5	53
15	Nitroxideâ€mediated radical copolymerization of methyl methacrylate controlled with a minimal amount of 9â€(4â€vinylbenzyl)â€9Hâ€carbazole. Journal of Polymer Science Part A, 2011, 49, 1033-1045.	2.3	52
16	Metal phthalocyanine organic thin-film transistors: changes in electrical performance and stability in response to temperature and environment. RSC Advances, 2019, 9, 21478-21485.	3.6	52
17	Multifunctional ternary additive in bulk heterojunction OPV: increased device performance and stability. Journal of Materials Chemistry A, 2017, 5, 1581-1587.	10.3	51
18	Incorporating glycidyl methacrylate into block copolymers using poly(methacrylateâ€ <i>ran</i> â€styrene) macroinitiators synthesized by nitroxideâ€mediated polymerization. Journal of Polymer Science Part A, 2009, 47, 2574-2588.	2.3	49

#	Article	IF	CITATIONS
19	Silicon phthalocyanines as dopant red emitters for efficient solution processed OLEDs. Journal of Materials Chemistry C, 2017, 5, 12688-12698.	5 . 5	48
20	Styrene/tert-Butyl Acrylate Random Copolymers Synthesized by Nitroxide-Mediated Polymerization:Â Effect of Free Nitroxide on Kinetics and Copolymer Composition. Macromolecules, 2007, 40, 9284-9292.	4.8	46
21	Silicon phthalocyanines as N-type semiconductors in organic thin film transistors. Journal of Materials Chemistry C, 2018, 6, 5482-5488.	5 . 5	46
22	The position and frequency of fluorine atoms changes the electron donor/acceptor properties of fluorophenoxy silicon phthalocyanines within organic photovoltaic devices. Journal of Materials Chemistry A, 2015, 3, 24512-24524.	10.3	42
23	P andÂN type copper phthalocyanines as effective semiconductors in organic thin-film transistor based DNA biosensors at elevated temperatures. RSC Advances, 2019, 9, 2133-2142.	3.6	42
24	Bis(tri-n-alkylsilyl oxide) silicon phthalocyanines: a start to establishing a structure property relationship as both ternary additives and non-fullerene electron acceptors in bulk heterojunction organic photovoltaic devices. Journal of Materials Chemistry A, 2017, 5, 12168-12182.	10.3	41
25	Poly(<i>tert</i> -butyl methacrylate/styrene) Macroinitiators as Precursors for Organo- and Water-Soluble Functional Copolymers Using Nitroxide-Mediated Controlled Radical Polymerization. Macromolecules, 2010, 43, 868-878.	4.8	40
26	Nitroxide mediated controlled synthesis of glycidyl methacrylate-rich copolymers enabled by SG1-based alkoxyamines bearing succinimidyl ester groups. Polymer Chemistry, 2011, 2, 2084.	3.9	39
27	The Rise of Silicon Phthalocyanine: From Organic Photovoltaics to Organic Thin Film Transistors. ACS Applied Materials & Samp; Interfaces, 2021, 13, 31321-31330.	8.0	37
28	Highâ€Molecularâ€Weight Poly(<i>tert</i> àê€butyl acrylate) by Nitroxideâ€Mediated Polymerization: Effect of Chain Transfer to Solvent. Macromolecular Reaction Engineering, 2009, 3, 245-256.	1.5	36
29	Synthesis of a Perylene Diimide Dimer with Pyrrolic N–H Bonds and Nâ€Functionalized Derivatives for Organic Fieldâ€Effect Transistors and Organic Solar Cells. European Journal of Organic Chemistry, 2018, 4592-4599.	2.4	34
30	The influence of air and temperature on the performance of PBDB-T and P3HT in organic thin film transistors. Journal of Materials Chemistry C, 2018, 6, 11972-11979.	5.5	34
31	Donor or Acceptor? How Selection of the Rylene Imide End Cap Impacts the Polarity of π-Conjugated Molecules for Organic Electronics. ACS Applied Energy Materials, 2018, 1, 4906-4916.	5.1	34
32	Assessing the potential of group 13 and 14 metal/metalloid phthalocyanines as hole transport layers in organic light emitting diodes. Journal of Applied Physics, 2016, 119, 145502.	2.5	32
33	Hierarchically porous polymeric materials from ternary polymer blends. Polymer, 2014, 55, 3461-3467.	3.8	31
34	Ambipolarity and Air Stability of Silicon Phthalocyanine Organic Thinâ€Film Transistors. Advanced Electronic Materials, 2019, 5, 1900087.	5.1	31
35	"Smart―poly(2â€(dimethylamino)ethyl methacrylateâ€ <i>ran</i> à€9â€(4â€vinylbenzyl)â€9Hâ€carbazole) of Polymer Science Part A, 2011, 49, 5270-5283.	copolymer 2.3	s 30
36	Understanding the Controlled Polymerization of Methyl Methacrylate with Low Concentrations of 9-(4-Vinylbenzyl)-9 <i>H</i> -carbazole Comonomer by Nitroxide-Mediated Polymerization: The Pivotal Role of Reactivity Ratios. Macromolecules, 2013, 46, 805-813.	4.8	30

#	Article	IF	Citations
37	Synthesis and Characterization of Benzyl Methacrylate/Styrene Random Copolymers Prepared by NMP. Macromolecular Reaction Engineering, 2010, 4, 415-423.	1.5	29
38	Evaluating Thiophene Electronâ€Donor Layers for the Rapid Assessment of Boron Subphthalocyanines as Electron Acceptors in Organic Photovoltaics: Solution or Vacuum Deposition?. ChemPhysChem, 2015, 16, 1245-1250.	2.1	29
39	Thin-Film Engineering of Solution-Processable n-Type Silicon Phthalocyanines for Organic Thin-Film Transistors. ACS Applied Materials & Samp; Interfaces, 2021, 13, 1008-1020.	8.0	29
40	Effect of an Acid Protecting Group on the "Livingness―of Poly(acrylic acid-ran-styrene) Random Copolymer Macroinitiators for Nitroxide-Mediated Polymerization of Styrene. Macromolecules, 2008, 41, 7881-7891.	4.8	28
41	Smart morpholine-functional statistical copolymers synthesized by nitroxide mediated polymerization. Polymer, 2012, 53, 5649-5656.	3.8	28
42	Polycarbazoleâ€Sorted Semiconducting Singleâ€Walled Carbon Nanotubes for Incorporation into Organic Thin Film Transistors. Advanced Electronic Materials, 2019, 5, 1800539.	5.1	28
43	Contact Engineering Using Manganese, Chromium, and Bathocuproine in Group 14 Phthalocyanine Organic Thin-Film Transistors. ACS Applied Electronic Materials, 2020, 2, 1313-1322.	4.3	28
44	On-the-Spot Detection and Speciation of Cannabinoids Using Organic Thin-Film Transistors. ACS Sensors, 2019, 4, 2706-2715.	7.8	27
45	Bis(trialkylsilyl oxide) Silicon Phthalocyanines: Understanding the Role of Solubility in Device Performance as Ternary Additives in Organic Photovoltaics. Langmuir, 2020, 36, 2612-2621.	3.5	27
46	Silicon Phthalocyanines for n-Type Organic Thin-Film Transistors: Development of Structure–Property Relationships. ACS Applied Electronic Materials, 2021, 3, 325-336.	4.3	27
47	From chemical curiosity to versatile building blocks: unmasking the hidden potential of main-group phthalocyanines in organic field-effect transistors. Materials Advances, 2021, 2, 165-185.	5.4	27
48	From chloro to fluoro, expanding the role of aluminum phthalocyanine in organic photovoltaic devices. Journal of Materials Chemistry A, 2015, 3, 5047-5053.	10.3	26
49	Functionalized Tetrathienoanthracene: Enhancing ï€â€"ï€ Interactions Through Expansion of the Ï€-Conjugated Framework. Crystal Growth and Design, 2012, 12, 1416-1421.	3.0	25
50	Organic thin-film transistors incorporating a commercial pigment (Hostasol Red GG) as a low-cost semiconductor. Dyes and Pigments, 2018, 149, 449-455.	3.7	25
51	Polyfluorene-Sorted Semiconducting Single-Walled Carbon Nanotubes for Applications in Thin-Film Transistors. Chemistry of Materials, 2019, 31, 2863-2872.	6.7	25
52	A ring fused N-annulated PDI non-fullerene acceptor for high open circuit voltage solar cells processed from non-halogenated solvents. Synthetic Metals, 2019, 250, 55-62.	3.9	23
53	Air and temperature sensitivity of n-type polymer materials to meet and exceed the standard of N2200. Scientific Reports, 2020, 10, 4014.	3.3	23
54	Doping chloro boron subnaphthalocyanines and chloro boron subphthalocyanine in simple OLED architectures yields warm white incandescent-like emissions. Optical Materials, 2018, 75, 710-718.	3.6	22

#	Article	IF	Citations
55	High Voc solution-processed organic solar cells containing silicon phthalocyanine as a non-fullerene electron acceptor. Organic Electronics, 2020, 87, 105976.	2.6	22
56	Boron subphthalocyanine polymers: Avoiding the small molecule side product and exploring their use in organic lightâ€emitting diodes. Journal of Polymer Science Part A, 2015, 53, 1996-2006.	2.3	21
57	Solution-Processable n-Type Tin Phthalocyanines in Organic Thin Film Transistors and as Ternary Additives in Organic Photovoltaics. ACS Applied Electronic Materials, 2019, 1, 494-504.	4.3	21
58	Effect of acrylic acid neutralization on â€livingness' of poly[styreneâ€ <i>ran</i> àê(acrylic acid)] macroâ€initiators for nitroxideâ€mediated polymerization of styrene. Polymer International, 2008, 57, 1141-1151.	3.1	20
59	Ambipolarity and Dimensionality of Charge Transport in Crystalline Group 14 Phthalocyanines: A Computational Study. Journal of Physical Chemistry C, 2018, 122, 2554-2563.	3.1	20
60	Excess Polymer in Single-Walled Carbon Nanotube Thin-Film Transistors: Its Removal Prior to Fabrication Is Unnecessary. ACS Nano, 2021, 15, 8252-8266.	14.6	20
61	A Boron Subphthalocyanine Polymer: Poly(4-methylstyrene)- <i>co</i> -poly(phenoxy boron) Tj ETQq1 1 0.784314	rgBT /Ov	erlock 10 Tf
62	Waterâ€soluble/dispersible carbazoleâ€containing random and block copolymers by nitroxideâ€mediated radical polymerisation. Canadian Journal of Chemical Engineering, 2013, 91, 618-629.	1.7	19
63	Benzyl and fluorinated benzyl side chains for perylene diimide non-fullerene acceptors. Materials Chemistry Frontiers, 2018, 2, 2272-2276.	5.9	19
64	Synthetically facile organic solar cells with >4% efficiency using P3HT and a silicon phthalocyanine non-fullerene acceptor. Materials Advances, 2021, 2, 2594-2599.	5.4	18
65	Poly(2-(N-carbazolyl)ethyl acrylate) as a host for high efficiency polymer light-emitting devices. Organic Electronics, 2015, 17, 377-385.	2.6	17
66	Old Molecule, New Chemistry: Exploring Silicon Phthalocyanines as Emerging N-Type Materials in Organic Electronics. Materials, 2019, 12, 1334.	2.9	17
67	Unipolar Polymerized Ionic Liquid Copolymers as High-Capacitance Electrolyte Gates for n-Type Transistors. ACS Applied Polymer Materials, 2019, 1, 3210-3221.	4.4	16
68	A N–H functionalized perylene diimide with strong red-light absorption for green solvent processed organic electronics. Journal of Materials Chemistry C, 2020, 8, 9811-9815.	5.5	16
69	Highlighting the processing versatility of a silicon phthalocyanine derivative for organic thin-film transistors. Journal of Materials Chemistry C, 2022, 10, 485-495.	5.5	16
70	Organic Thin Film Transistors Incorporating Solution Processable Thieno[3,2-b]thiophene Thienoacenes. Materials, 2018, 11, 8.	2.9	15
71	Silicon Phthalocyanines as Acceptor Candidates in Mixed Solution/Evaporation Processed Planar Heterojunction Organic Photovoltaic Devices. Coatings, 2019, 9, 203.	2.6	15
72	Improving Thin-Film Properties of Poly(vinyl alcohol) by the Addition of Low-Weight Percentages of Cellulose Nanocrystals. Langmuir, 2020, 36, 3550-3557.	3.5	15

#	Article	IF	CITATIONS
73	Oligothiopheneâ€Functionalized Benzene and Tetrathienoanthracene: Effect of Enhanced Ï€â€Conjugation on Optoelectronic Properties, Selfâ€Assembly and Device Performance. European Journal of Organic Chemistry, 2013, 2013, 5854-5863.	2.4	14
74	Amphiphilic Poly(4â€acryloylmorpholine)/Poly[2â€(<i>N</i> â€carbazolyl)ethyl acrylate] Random and Block Copolymers Synthesized by NMP. Macromolecular Reaction Engineering, 2012, 6, 200-212.	1.5	13
75	Reactivity Ratio Estimation in Radical Copolymerization: From Preliminary Estimates to Optimal Design of Experiments. Industrial & Engineering Chemistry Research, 2014, 53, 7305-7312.	3.7	13
76	Controlled Synthesis and Degradation of Poly($\langle i \rangle N \langle i \rangle$ -(isobutoxymethyl) acrylamide) Homopolymers and Block Copolymers. Macromolecular Reaction Engineering, 2017, 11, 1600073.	1.5	13
77	Phenoxylated siloxane-based polymers via the Piersâ^'Rubinsztajn process. Polymer International, 2017, 66, 1324-1328.	3.1	13
78	Nitroxide Mediated Polymerization of 1â€(4â€vinylbenzyl)â€3â€butylimidazolium Ionic Liquid Containing Homopolymers and Methyl Methacrylate Copolymers. Canadian Journal of Chemical Engineering, 2019, 97, 5-16.	1.7	12
79	Ionic Liquid Containing Block Copolymer Dielectrics: Designing for High-Frequency Capacitance, Low-Voltage Operation, and Fast Switching Speeds. Jacs Au, 2021, 1, 1044-1056.	7.9	12
80	Nitroxideâ€mediated synthesis of styrenicâ€based segmented and tapered block copolymers using poly(lactide)â€functionalized TEMPO macromediators. Journal of Applied Polymer Science, 2008, 109, 3185-3195.	2.6	11
81	Boron Subphthalocyanine Polymers by Facile Coupling to Poly(acrylic acidâ€ranâ€styrene) Copolymers Synthesized by Nitroxideâ€Mediated Polymerization and the Associated Problems with Autoinitiation. Macromolecular Rapid Communications, 2013, 34, 568-573.	3.9	11
82	Engineering Cannabinoid Sensors through Solution-Based Screening of Phthalocyanines. ACS Applied Materials & Samp; Interfaces, 2020, 12, 50692-50702.	8.0	11
83	Thermodynamic Property–Performance Relationships in Silicon Phthalocyanine-Based Organic Photovoltaics. ACS Applied Energy Materials, 2022, 5, 3426-3435.	5.1	11
84	Boron Subphthalocyanine Coupled to Methacrylateâ€Rich Terpolymers by Nitroxide Mediated Polymerization: The Subphthalocyanine Dictates the Phase Transition Temperatures. Macromolecular Chemistry and Physics, 2017, 218, 1600592.	2.2	10
85	Straightforward and Relatively Safe Process for the Fluoride Exchange of Trivalent and Tetravalent Group 13 and 14 Phthalocyanines. ACS Omega, 2019, 4, 5317-5326.	3.5	10
86	N-Type Solution-Processed Tin versus Silicon Phthalocyanines: A Comparison of Performance in Organic Thin-Film Transistors and in Organic Photovoltaics. ACS Applied Electronic Materials, 2021, 3, 1873-1885.	4.3	10
87	Thermo-responsive, UV-active poly(phenyl acrylate)-b-poly(diethyl acrylamide) block copolymers. EXPRESS Polymer Letters, 2013, 7, 1020-1029.	2.1	9
88	Applying thieno[3,2-b]thiophene as a building block in the design of rigid extended thienoacenes. RSC Advances, 2016, 6, 97420-97429.	3.6	9
89	Developing 9,10-anthracene Derivatives: Optical, Electrochemical, Thermal, and Electrical Characterization. Materials, 2019, 12, 2726.	2.9	9
90	Controlled Synthesis of Poly(pentafluorostyrene-ran-methyl methacrylate) Copolymers by Nitroxide Mediated Polymerization and Their Use as Dielectric Layers in Organic Thin-film Transistors. Polymers, 2020, 12, 1231.	4.5	9

#	Article	IF	Citations
91	An air-stable n-type bay-and-headland substituted bis-cyano Nâ€"H functionalized perylene diimide for printed electronics. Journal of Materials Chemistry C, 2021, 9, 13630-13634.	5.5	9
92	Cyanophenoxy-Substituted Silicon Phthalocyanines for Low Threshold Voltage n-Type Organic Thin-Film Transistors. ACS Applied Electronic Materials, 2021, 3, 2212-2223.	4.3	9
93	High Performance Organic Electronic Devices Based on a Green Hybrid Dielectric. Advanced Electronic Materials, 2021, 7, 2100700.	5.1	9
94	Variance-resistant PTB7 and axially-substituted silicon phthalocyanines as active materials for high-Voc organic photovoltaics. Scientific Reports, 2021, 11, 15347.	3.3	8
95	Benchmarking contact quality in N-type organic thin film transistors through an improved virtual-source emission-diffusion model. Applied Physics Reviews, 2022, 9, .	11.3	8
96	Functionalized thienoacridines: synthesis, optoelectronic, and structural properties. Canadian Journal of Chemistry, 2014, 92, 1106-1110.	1.1	7
97	Orthogonally Processable Carbazole-Based Polymer Thin Films by Nitroxide-Mediated Polymerization. Langmuir, 2016, 32, 13640-13648.	3.5	7
98	Crystal structures of bis(phenoxy)silicon phthalocyanines: increasing π–π interactions, solubility and disorder and no halogen bonding observed. Acta Crystallographica Section E: Crystallographic Communications, 2016, 72, 988-994.	0.5	7
99	1,2,3-Triazole based poly(ionic liquids) as solid dielectric materials. Polymer, 2021, 212, 123144.	3.8	7
100	Boron Nitride Nanotube Coatings for Thermal Management of Printed Silver Inks on Temperature Sensitive Substrates. Advanced Electronic Materials, 2021, 7, 2001035.	5.1	7
101	Poly(ethylene-co-butylene)-b-(styrene-ran-maleic anhydride) ₂ Compatibilizers via Nitroxide Mediated Radical Polymerization. International Polymer Processing, 2011, 26, 197-204.	0.5	6
102	Attaining air stability in high performing n-type phthalocyanine based organic semiconductors. Journal of Materials Chemistry C, 2021, 9, 10119-10126.	5.5	6
103	Enthalpy of the Complexation in Electrolyte Solutions of Polycations and Polyzwitterions of Different Structures and Topologies. Macromolecules, 2021, 54, 6678-6690.	4.8	6
104	Changes in Optimal Ternary Additive Loading when Processing Large Area Organic Photovoltaics by Spin―versus Bladeâ€Coating Methods. Solar Rrl, 2021, 5, 2100432.	5.8	6
105	Chapter 11. Novel Materials: From Nanoporous Materials to Micro-Electronics. RSC Polymer Chemistry Series, 2015, , 441-493.	0.2	6
106	Organic Thinâ€Film Transistors as Cannabinoid Sensors: Effect of Analytes on Phthalocyanine Film Crystallization. Advanced Functional Materials, 2022, 32, 2107138.	14.9	6
107	Improving Latexâ€Based Pressureâ€Sensitive Adhesive Properties Using Carboxylated Cellulose Nanocrystals. Macromolecular Reaction Engineering, 2022, 16, .	1.5	6
108	Incorporating primary amine pendant groups into copolymers via nitroxide mediated polymerization. Reactive and Functional Polymers, 2011, 71, 1137-1147.	4.1	5

#	Article	IF	CITATIONS
109	Copolymerization of 2,3,4,5,6â€Pentafluorostyrene and Methacrylic Acid by Nitroxideâ€Mediated Polymerization: The Importance of Reactivity Ratios. Macromolecular Reaction Engineering, 2016, 10, 600-610.	1.5	5
110	Organic Thin Film Transistors: Polycarbazoleâ€Sorted Semiconducting Singleâ€Walled Carbon Nanotubes for Incorporation into Organic Thin Film Transistors (Adv. Electron. Mater. 1/2019). Advanced Electronic Materials, 2019, 5, 1970002.	5.1	5
111	The Effect of TCNE and TCNQ Acceptor Units on Triphenylamineâ€Naphthalenediimide Pushâ€Pull Chromophore Properties. European Journal of Organic Chemistry, 2021, 2021, 2615-2624.	2.4	5
112	Controlled and selective placement of boron subphthalocyanines on either chain end of polymers synthesized by nitroxide mediated polymerization. AIMS Molecular Science, 2015, 2, 411-426.	0.5	5
113	Layer-by-Layer Organic Photovoltaic Solar Cells Using a Solution-Processed Silicon Phthalocyanine Non-Fullerene Acceptor. ACS Omega, 2022, 7, 7541-7549.	3.5	5
114	Thiophene decorated block copolymers templated from poly(styrene-alt-maleic) Tj ETQq0 0 0 rgBT /Overlock 10 Tf morphology. Journal of Polymer Research, 2016, 23, 1.	50 547 2.4	Td (anhydride 4
115	Functionalization of commercial pigment Hostasol Red GG for incorporation into organic thin-film transistors. New Journal of Chemistry, 2020, 44, 845-851.	2.8	4
116	Conjoint use of Naphthalene Diimide and Fullerene Derivatives to Generate Organic Semiconductors for n–type Organic Thin Film Transistors. ChemistryOpen, 2021, 10, 414-420.	1.9	4
117	Poly(ethylene glycol)-Based Poly(ionic liquid) Block Copolymers through 1,2,3-Triazole Click Reactions. ACS Applied Polymer Materials, 2022, 4, 1559-1564.	4.4	4
118	Correlating Morphology, Molecular Orientation, and Transistor Performance of Bis(pentafluorophenoxy)silicon Phthalocyanine Using Scanning Transmission X-ray Microscopy. Chemistry of Materials, 2022, 34, 4496-4504.	6.7	4
119	Optimization of 4-vinylpyridine nitroxide mediated controlled radical polymerization: Effect of initiator protection and complexation with C60. E-Polymers, 2012, 12, .	3.0	3
120	Developing and Comparing 2,6-Anthracene Derivatives: Optical, Electrochemical, Thermal, and Their Use in Organic Thin Film Transistors. Materials, 2020, 13, 1961.	2.9	3
121	Use of Piers–Rubinsztajn Chemistry to Access Unique and Challenging Silicon Phthalocyanines. ACS Omega, 2021, 6, 26857-26869.	3.5	3
122	Self-Consistent Extraction of Mobility and Series Resistance: A Hierarchy of Models for Benchmarking Organic Thin-Film Transistors., 2022, 1, 114-121.		3
123	Engineering Silver Microgrids with a Boron Nitride Nanotube Interlayer for Highly Conductive and Flexible Transparent Heaters. Advanced Materials Technologies, 0, , 2200037.	5.8	3
124	Poly(styrene-alt-maleic anhydride)-block-poly(methacrylate-ran-styrene) block copolymers with tunable mechanical properties by nitroxide mediated controlled radical polymerization. Macromolecular Research, 2016, 24, 710-715.	2.4	2
125	Organic TFTs: Ambipolarity and Air Stability of Silicon Phthalocyanine Organic Thinâ€Film Transistors (Adv. Electron. Mater. 8/2019). Advanced Electronic Materials, 2019, 5, 1970041.	5.1	2
126	N $\hat{a} \in A$ nnulated perylene diimide dimers and tetramer non $\hat{a} \in A$ nnulated perylene diimide dimers and tetramer non $\hat{a} \in A$ nnulated perylene diimide dimers and tetramer non $\hat{a} \in A$ nnulated perylene diimide dimers and tetramer non $\hat{a} \in A$ nnulated perylene diimide dimers and tetramer non $\hat{a} \in A$ nnulated perylene diimide dimers and tetramer non $\hat{a} \in A$ nnulated perylene diimide dimers and tetramer non $\hat{a} \in A$ nnulated perylene diimide dimers and tetramer non $\hat{a} \in A$ nnulated perylene diimide dimers and tetramer non $\hat{a} \in A$ nnulated perylene diimide dimers and tetramer non $\hat{a} \in A$ nnulated perylene diimide dimers and tetramer non $\hat{a} \in A$ nnulated perylene diimide dimers and tetramer non $\hat{a} \in A$ nnulated perylene diimide dimers and tetramer non $\hat{a} \in A$ nnulated perylene diimide dimers and tetramer non $\hat{a} \in A$ nnulated perylene dimers and tetramer non $\hat{a} \in A$ nnulated perylene dimers and tetramer non $\hat{a} \in A$ nnulated perylene dimers and tetramer non $\hat{a} \in A$ nnulated perylene dimers and tetramer non $\hat{a} \in A$ nnulated perylene dimers and tetramer non $\hat{a} \in A$ nnulated perylene dimers and tetramer non $\hat{a} \in A$ nnulated perylene dimers and tetramer non $\hat{a} \in A$ nnulated perylene dimers and tetramer none dimers	3.2	2

#	Article	IF	CITATIONS
127	Design of ternary additive for organic photovoltaics: a cautionary tale. RSC Advances, 2022, 12, 10029-10036.	3.6	2
128	The Need to Pair Molecular Monitoring Devices with Molecular Imaging to Personalize Health. Molecular Imaging and Biology, 2022, , 1.	2.6	2
129	Exploring ellagic acid as a building block in the design of organic semiconductors. Dyes and Pigments, 2022, 199, 109998.	3.7	1
130	Organic Thinâ€Film Transistors as Cannabinoid Sensors: Effect of Analytes on Phthalocyanine Film Crystallization (Adv. Funct. Mater. 7/2022). Advanced Functional Materials, 2022, 32, .	14.9	1
131	Changes in Optimal Ternary Additive Loading when Processing Large Area Organic Photovoltaics by Spin―versus Bladeâ€Coating Methods. Solar Rrl, 2021, 5, 2170104.	5.8	0