
Chunaram Choudhary

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7115579/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	HDAC6 modulates myofibril stiffness and diastolic function of the heart. Journal of Clinical Investigation, 2022, 132, .	3.9	12
2	Proteome dynamics at broken replication forks reveal a distinct ATM-directed repair response suppressing DNA double-strand break ubiquitination. Molecular Cell, 2021, 81, 1084-1099.e6.	4.5	57
3	SIK2 orchestrates actin-dependent host response upon Salmonella infection. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2024144118.	3.3	10
4	Enhancers are activated by p300/CBP activity-dependent PIC assembly, RNAPII recruitment, and pause release. Molecular Cell, 2021, 81, 2166-2182.e6.	4.5	94
5	HBO1 is required for the maintenance of leukaemia stem cells. Nature, 2020, 577, 266-270.	13.7	105
6	Equilibrium between nascent and parental MCM proteins protects replicating genomes. Nature, 2020, 587, 297-302.	13.7	65
7	Sequencing of the First Draft of the Human Acetylome. Clinical Chemistry, 2020, 66, 852-853.	1.5	1
8	Histone Acetyltransferase MOF Blocks Acquisition of Quiescence in Ground-State ESCs through Activating Fatty Acid Oxidation. Cell Stem Cell, 2020, 27, 441-458.e10.	5.2	37
9	Analysis and Interpretation of Protein Post-Translational Modification Site Stoichiometry. Trends in Biochemical Sciences, 2019, 44, 943-960.	3.7	55
10	Analysis of human acetylation stoichiometry defines mechanistic constraints on protein regulation. Nature Communications, 2019, 10, 1055.	5.8	129
11	Functions and mechanisms of non-histone protein acetylation. Nature Reviews Molecular Cell Biology, 2019, 20, 156-174.	16.1	717
12	Acetylation of intrinsically disordered regions regulates phase separation. Nature Chemical Biology, 2019, 15, 51-61.	3.9	190
13	DNA Repair Network Analysis Reveals Shieldin as a Key Regulator of NHEJ and PARP Inhibitor Sensitivity. Cell, 2018, 173, 972-988.e23.	13.5	349
14	p38-MK2 signaling axis regulates RNA metabolism after UV-light-induced DNA damage. Nature Communications, 2018, 9, 1017.	5.8	61
15	Deletion of APC7 or APC16 Allows Proliferation of Human Cells without the Spindle Assembly Checkpoint. Cell Reports, 2018, 25, 2317-2328.e5.	2.9	11
16	Time-Resolved Analysis Reveals Rapid Dynamics and Broad Scope of the CBP/p300 Acetylome. Cell, 2018, 174, 231-244.e12.	13.5	313
17	STK3 is a therapeutic target for a subset of acute myeloid leukemias. Oncotarget, 2018, 9, 25458-25473.	0.8	10
18	Accurate Quantification of Site-specific Acetylation Stoichiometry Reveals the Impact of Sirtuin Deacetylase CobB on the E. coli Acetylome. Molecular and Cellular Proteomics, 2017, 16, 759-769.	2.5	80

CHUNARAM CHOUDHARY

#	Article	IF	CITATIONS
19	Discovery of a selective catalytic p300/CBP inhibitor that targets lineage-specific tumours. Nature, 2017, 550, 128-132.	13.7	498
20	Redox-sensitive alteration of replisome architecture safeguards genome integrity. Science, 2017, 358, 797-802.	6.0	127
21	IncRNA Panct1 Maintains Mouse Embryonic Stem Cell Identity by Regulating TOBF1 Recruitment to Oct-Sox Sequences in Early G1. Cell Reports, 2017, 21, 3012-3021.	2.9	35
22	<scp>SPATA</scp> 2 links <scp>CYLD</scp> to the <scp>TNF</scp> â€i± receptor signaling complex and modulates the receptor signaling outcomes. EMBO Journal, 2016, 35, 1868-1884.	3.5	129
23	Deubiquitylating enzyme USP9x regulates hippo pathway activity by controlling angiomotin protein turnover. Cell Discovery, 2016, 2, 16001.	3.1	34
24	The Spindle Assembly Checkpoint Is Not Essential for Viability of Human Cells with Genetically Lowered APC/C Activity. Cell Reports, 2016, 14, 1829-1840.	2.9	49
25	Mte1 interacts with Mph1 and promotes crossover recombination and telomere maintenance. Genes and Development, 2016, 30, 700-717.	2.7	27
26	A PTIP–PA1 subcomplex promotes transcription for IgH class switching independently from the associated MLL3/MLL4 methyltransferase complex. Genes and Development, 2016, 30, 149-163.	2.7	27
27	Analysis of acetylation stoichiometry suggests that <scp>SIRT</scp> 3 repairs nonenzymatic acetylation lesions. EMBO Journal, 2015, 34, 2620-2632.	3.5	133
28	Systemsâ€wide analysis of <scp>BCR</scp> signalosomes and downstream phosphorylation and ubiquitylation. Molecular Systems Biology, 2015, 11, 810.	3.2	119
29	Systems Analyses Reveal Shared and Diverse Attributes of Oct4 Regulation in Pluripotent Cells. Cell Systems, 2015, 1, 141-151.	2.9	15
30	Ubiquitin-SUMO Circuitry Controls Activated Fanconi Anemia ID Complex Dosage in Response to DNA Damage. Molecular Cell, 2015, 57, 150-164.	4.5	106
31	FBH1 influences DNA replication fork stability and homologous recombination through ubiquitylation of RAD51. Nature Communications, 2015, 6, 5931.	5.8	59
32	Cmr1/WDR76 defines a nuclear genotoxic stress body linking genome integrity and protein quality control. Nature Communications, 2015, 6, 6533.	5.8	80
33	Acetylation site specificities of lysine deacetylase inhibitors in human cells. Nature Biotechnology, 2015, 33, 415-423.	9.4	237
34	Histone H1 couples initiation and amplification of ubiquitin signalling after DNA damage. Nature, 2015, 527, 389-393.	13.7	317
35	Avoiding abundance bias in the functional annotation of posttranslationally modified proteins. Nature Methods, 2015, 12, 1003-1004.	9.0	60
36	Proteome-wide analysis of SUMO2 targets in response to pathological DNA replication stress in human cells. DNA Repair, 2015, 25, 84-96.	1.3	30

CHUNARAM CHOUDHARY

#	Article	IF	CITATIONS
37	Paradoxical resistance of multiple myeloma to proteasome inhibitors by decreased levels of 19S proteasomal subunits. ELife, 2015, 4, e08153.	2.8	84
38	A quantitative 14-3-3 interaction screen connects the nuclear exosome targeting complex to the DNA damage response. Genes and Development, 2014, 28, 1977-1982.	2.7	50
39	Time-resolved dissection of early phosphoproteome and ensuing proteome changes in response to TGF-β. Science Signaling, 2014, 7, rs5.	1.6	39
40	Acetylation dynamics and stoichiometry in <i><scp>S</scp>accharomyces cerevisiae</i> . Molecular Systems Biology, 2014, 10, 716.	3.2	220
41	UBL5 is essential for preâ€ <scp>mRNA</scp> splicing and sister chromatid cohesion in human cells. EMBO Reports, 2014, 15, 956-964.	2.0	41
42	The growing landscape of lysine acetylation links metabolism and cell signalling. Nature Reviews Molecular Cell Biology, 2014, 15, 536-550.	16.1	1,153
43	Convergence of Ubiquitylation and Phosphorylation Signaling in Rapamycin-treated Yeast Cells. Molecular and Cellular Proteomics, 2014, 13, 1979-1992.	2.5	49
44	Specificity and Commonality of the Phosphoinositide-Binding Proteome Analyzed by Quantitative Mass Spectrometry. Cell Reports, 2014, 6, 578-591.	2.9	75
45	UBL5 is essential for pre―mRNA splicing and sister chromatid cohesion in human cells. EMBO Reports, 2014, 15, 1330-1330.	2.0	1
46	Lysine Succinylation Is a Frequently Occurring Modification in Prokaryotes and Eukaryotes and Extensively Overlaps with Acetylation. Cell Reports, 2013, 4, 842-851.	2.9	619
47	OTULIN Restricts Met1-Linked Ubiquitination to Control Innate Immune Signaling. Molecular Cell, 2013, 50, 818-830.	4.5	209
48	Acetyl-Phosphate Is a Critical Determinant of Lysine Acetylation in E.Âcoli. Molecular Cell, 2013, 51, 265-272.	4.5	407
49	A new cellular stress response that triggers centriolar satellite reorganization and ciliogenesis. EMBO Journal, 2013, 32, 3029-3040.	3.5	115
50	RNF111/Arkadia is a SUMO-targeted ubiquitin ligase that facilitates the DNA damage response. Journal of Cell Biology, 2013, 201, 797-807.	2.3	129
51	Proteomic Analyses Reveal Divergent Ubiquitylation Site Patterns in Murine Tissues. Molecular and Cellular Proteomics, 2012, 11, 1578-1585.	2.5	244
52	Proteome-wide Analysis of Lysine Acetylation Suggests its Broad Regulatory Scope in Saccharomyces cerevisiae. Molecular and Cellular Proteomics, 2012, 11, 1510-1522.	2.5	255
53	SOCS1 cooperates with FLT3-ITD in the development of myeloproliferative disease by promoting the escape from external cytokine control. Blood, 2012, 120, 1691-1702.	0.6	27
54	Proteomic Analysis of Lysine Acetylation Sites in Rat Tissues Reveals Organ Specificity and Subcellular Patterns. Cell Reports, 2012, 2, 419-431.	2.9	493

#	Article	IF	CITATIONS
55	DVC1 (C1orf124) is a DNA damage–targeting p97 adaptor that promotes ubiquitin-dependent responses to replication blocks. Nature Structural and Molecular Biology, 2012, 19, 1084-1092.	3.6	153
56	Systems-wide analysis of ubiquitylation dynamics reveals a key role for PAF15 ubiquitylation in DNA-damage bypass. Nature Cell Biology, 2012, 14, 1089-1098.	4.6	234
57	Proteomic Investigations Reveal a Role for RNA Processing Factor THRAP3 in the DNA Damage Response. Molecular Cell, 2012, 46, 212-225.	4.5	298
58	Proteomic Investigations of Lysine Acetylation Identify Diverse Substrates of Mitochondrial Deacetylase Sirt3. PLoS ONE, 2012, 7, e50545.	1.1	128
59	Proteome-Wide Mapping of the <i>Drosophila</i> Acetylome Demonstrates a High Degree of Conservation of Lysine Acetylation. Science Signaling, 2011, 4, ra48.	1.6	243
60	Phosphorylation of the Autophagy Receptor Optineurin Restricts <i>Salmonella</i> Growth. Science, 2011, 333, 228-233.	6.0	1,125
61	A phospho-proteomic screen identifies substrates of the checkpoint kinase Chk1. Genome Biology, 2011, 12, R78.	13.9	123
62	A Proteome-wide, Quantitative Survey of In Vivo Ubiquitylation Sites Reveals Widespread Regulatory Roles. Molecular and Cellular Proteomics, 2011, 10, M111.013284.	2.5	754
63	Decoding signalling networks by mass spectrometry-based proteomics. Nature Reviews Molecular Cell Biology, 2010, 11, 427-439.	16.1	534
64	Predicting post-translational lysine acetylation using support vector machines. Bioinformatics, 2010, 26, 1666-1668.	1.8	61
65	SOCS1 Cooperates with FLT3-ITD In the Development of Myeloproliferative Disease by Promoting the Escape From External Cytokine Control Blood, 2010, 116, 1054-1054.	0.6	0
66	Lysine Acetylation Targets Protein Complexes and Co-Regulates Major Cellular Functions. Science, 2009, 325, 834-840.	6.0	3,883
67	Mislocalized Activation of Oncogenic RTKs Switches Downstream Signaling Outcomes. Molecular Cell, 2009, 36, 326-339.	4.5	278
68	Activation of Wnt signaling in cKit-ITD mediated transformation and imatinib sensitivity in acute myeloid leukemia. International Journal of Hematology, 2008, 88, 174-180.	0.7	11
69	Activation of Wnt signalling in acute myeloid leukemia by induction of Frizzled-4. International Journal of Oncology, 2008, 33, 1215-21.	1.4	18
70	Activation mechanisms of STAT5 by oncogenic Flt3-ITD. Blood, 2007, 110, 370-374.	0.6	170
71	Flt3-dependent transformation by inactivating c-Cbl mutations in AML. Blood, 2007, 110, 1004-1012.	0.6	177
72	Wnt signaling regulates transendothelial migration of monocytes. Journal of Leukocyte Biology, 2006, 79, 1306-1313.	1.5	60

#	Article	IF	CITATIONS
73	Activation Mechanisms of STAT5 by Oncogenic Flt3-ITD Blood, 2006, 108, 1435-1435.	0.6	27
74	Constitutive Activation of Akt by Flt3 Internal Tandem Duplications Is Necessary for Increased Survival, Proliferation, and Myeloid Transformation. Cancer Research, 2005, 65, 9643-9650.	0.4	205
75	Identification of a novel activating mutation (Y842C) within the activation loop of FLT3 in patients with acute myeloid leukemia (AML). Blood, 2005, 105, 335-340.	0.6	97
76	Flt3 tandem duplication mutations cooperate with Wnt signaling in leukemic signal transduction. Blood, 2005, 105, 3699-3706.	0.6	99
77	AML-associated Flt3 kinase domain mutations show signal transduction differences compared with Flt3 ITD mutations. Blood, 2005, 106, 265-273.	0.6	224
78	RGS2 is an important target gene of Flt3-ITD mutations in AML and functions in myeloid differentiation and leukemic transformation. Blood, 2005, 105, 2107-2114.	0.6	70
79	Signal Transduction of Oncogenic Flt3. International Journal of Hematology, 2005, 82, 93-99.	0.7	77
80	Tyrosine Phosphorylation Regulates Maturation of Receptor Tyrosine Kinases. Molecular and Cellular Biology, 2005, 25, 3690-3703.	1.1	135
81	The Cyclin A1-CDK2 Complex Regulates DNA Double-Strand Break Repair. Molecular and Cellular Biology, 2004, 24, 8917-8928.	1.1	106
82	Flt3 Internal Tandem Duplications Cooperate with Wnt Signaling in Leukemic Signal Transduction Blood, 2004, 104, 822-822.	0.6	10
83	Constitutive Activation of Akt and mTOR by Flt3 Internal Tandem Duplications Mediates Myeloid Leukemogenesis and Can Be Inhibited by Rapamycin Blood, 2004, 104, 2532-2532.	0.6	8
84	Suppression of myeloid transcription factors and induction of STAT response genes by AML-specific Flt3 mutations. Blood, 2003, 101, 3164-3173.	0.6	274