Koji Miyamoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7115220/publications.pdf

Version: 2024-02-01

304743 395702 34 1,423 22 33 h-index citations g-index papers 34 34 34 1764 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	OsWRKY28, a PAMP-responsive transrepressor, negatively regulates innate immune responses in rice against rice blast fungus. Plant Molecular Biology, 2013, 82, 23-37.	3.9	142
2	OsTGAP1, a bZIP Transcription Factor, Coordinately Regulates the Inductive Production of Diterpenoid Phytoalexins in Rice. Journal of Biological Chemistry, 2009, 284, 26510-26518.	3.4	140
3	Echinochloa crus-galli genome analysis provides insight into its adaptation and invasiveness as a weed. Nature Communications, 2017, 8, 1031.	12.8	138
4	Overexpression of Phosphomimic Mutated OsWRKY53 Leads to Enhanced Blast Resistance in Rice. PLoS ONE, 2014, 9, e98737.	2.5	94
5	The Multivesicular Bodies (MVBs)-Localized AAA ATPase LRD6-6 Inhibits Immunity and Cell Death Likely through Regulating MVBs-Mediated Vesicular Trafficking in Rice. PLoS Genetics, 2016, 12, e1006311.	3 . 5	81
6	Evolutionary trajectory of phytoalexin biosynthetic gene clusters in rice. Plant Journal, 2016, 87, 293-304.	5.7	76
7	Distribution Analysis of Anthocyanins, Sugars, and Organic Acids in Strawberry Fruits Using Matrix-Assisted Laser Desorption/Ionization-Imaging Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2018, 66, 4958-4965.	5. 2	73
8	Genomic evidence for convergent evolution of gene clusters for momilactone biosynthesis in land plants. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12472-12480.	7.1	73
9	Overexpression of the bZIP transcription factor OsbZIP79 suppresses the production of diterpenoid phytoalexin in rice cells. Journal of Plant Physiology, 2015, 173, 19-27.	3 . 5	70
10	OsJAR1 Contributes Mainly to Biosynthesis of the Stress-Induced Jasmonoyl-Isoleucine Involved in Defense Responses in Rice. Bioscience, Biotechnology and Biochemistry, 2013, 77, 1556-1564.	1.3	59
11	OsMYC2, an essential factor for JA-inductive sakuranetin production in rice, interacts with MYC2-like proteins that enhance its transactivation ability. Scientific Reports, 2017, 7, 40175.	3.3	55
12	Identification of an E-box motif responsible for the expression of jasmonic acid-induced chitinase gene OsChia4a in rice. Journal of Plant Physiology, 2012, 169, 621-627.	3.5	39
13	Identification of Target Genes of the bZIP Transcription Factor OsTGAP1, Whose Overexpression Causes Elicitor-Induced Hyperaccumulation of Diterpenoid Phytoalexins in Rice Cells. PLoS ONE, 2014, 9, e105823.	2.5	33
14	Visualisation of abscisic acid and 12-oxo-phytodienoic acid in immature Phaseolus vulgaris L. seeds using desorption electrospray ionisation-imaging mass spectrometry. Scientific Reports, 2017, 7, 42977.	3.3	33
15	PUB4, a CERK1-Interacting Ubiquitin Ligase, Positively Regulates MAMP-Triggered Immunity in Arabidopsis. Plant and Cell Physiology, 2019, 60, 2573-2583.	3.1	33
16	HpDTC1, a Stress-Inducible Bifunctional Diterpene Cyclase Involved in Momilactone Biosynthesis, Functions in Chemical Defence in the Moss Hypnum plumaeforme. Scientific Reports, 2016, 6, 25316.	3.3	31
17	Transcripts of two ent-copalyl diphosphate synthase genes differentially localize in rice plants according to their distinct biological roles. Journal of Experimental Botany, 2015, 66, 369-376.	4.8	30
18	OsMYC2 mediates numerous defence-related transcriptional changes via jasmonic acid signalling in rice. Biochemical and Biophysical Research Communications, 2017, 486, 796-803.	2.1	28

#	Article	IF	CITATIONS
19	Transcriptional regulation of the biosynthesis of phytoalexin: A lesson from specialized metabolites in rice. Plant Biotechnology, 2014, 31, 377-388.	1.0	27
20	Stress-induced expression of the transcription factor RERJ1 is tightly regulated in response to jasmonic acid accumulation in rice. Protoplasma, 2013, 250, 241-249.	2.1	24
21	Jasmonoyl- <scp>I</scp> -isoleucine is required for the production of a flavonoid phytoalexin but not diterpenoid phytoalexins in ultraviolet-irradiated rice leaves. Bioscience, Biotechnology and Biochemistry, 2016, 80, 1934-1938.	1.3	23
22	OsTGAP1 is responsible for JAâ€inducible diterpenoid phytoalexin biosynthesis in rice roots with biological impacts on allelopathic interaction. Physiologia Plantarum, 2017, 161, 532-544.	5.2	23
23	The rice wound-inducible transcription factor RERJ1 sharing same signal transduction pathway with OsMYC2 is necessary for defense response to herbivory and bacterial blight. Plant Molecular Biology, 2022, 109, 651-666.	3.9	19
24	<i>In planta</i> functions of cytochrome P450 monooxygenase genes in the phytocassane biosynthetic gene cluster on rice chromosome 2. Bioscience, Biotechnology and Biochemistry, 2018, 82, 1021-1030.	1.3	14
25	Characterization and evolutionary analysis of ent-kaurene synthase like genes from the wild rice species Oryza rufipogon. Biochemical and Biophysical Research Communications, 2016, 480, 402-408.	2.1	12
26	Chitooligosaccharide elicitor and oxylipins synergistically elevate phytoalexin production in rice. Plant Molecular Biology, 2022, 109, 595-609.	3.9	11
27	Expression of <i>RSOsPR10</i> in rice roots is antagonistically regulated by jasmonate/ethylene and salicylic acid via the activator OsERF87 and the repressor OsWRKY76, respectively. Plant Direct, 2018, 2, e00049.	1.9	9
28	Characterization of diterpene synthase genes in the wild rice species Oryza brachyatha provides evolutionary insight into rice phytoalexin biosynthesis. Biochemical and Biophysical Research Communications, 2018, 503, 1221-1227.	2.1	9
29	Facile preparation of optically active jasmonates and their biological activities in rice. Bioscience, Biotechnology and Biochemistry, 2019, 83, 876-881.	1.3	7
30	Direct LC–ESI–MS/MS analysis of plant glucosylceramide and ceramide species with 8 <i>E</i> and 8 <i>Z</i> isomers of the long chain base. Bioscience, Biotechnology and Biochemistry, 2021, 85, 205-210.	1.3	6
31	Unique localization of jasmonic acid-related compounds in developing Phaseolus vulgaris L. (common) Tj ETQq1 1 Phytochemistry, 2021, 188, 112812.	0.784314	4 rgBT /Ove 5
32	Sphingadienine-1-phosphate levels are regulated by a novel glycoside hydrolase family 1 glucocerebrosidase widely distributed in seed plants. Journal of Biological Chemistry, 2021, 297, 101236.	3.4	4
33	Functional kaurene-synthase-like diterpene synthases lacking a gamma domain are widely present in <i>Oryza</i> and related species. Bioscience, Biotechnology and Biochemistry, 2021, 85, 1945-1952.	1.3	1
34	Deciphering OPDA Signaling Components in the Momilactone-Producing Moss. Frontiers in Plant Science, 2021, 12, 688565.	3.6	1