Chengying Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7115104/publications.pdf

Version: 2024-02-01

304743 395702 1,329 33 22 33 citations h-index g-index papers 34 34 34 1305 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Biosynthesis of citrus flavonoids and their health effects. Critical Reviews in Food Science and Nutrition, 2020, 60, 566-583.	10.3	130
2	Dietary Fibers from Fruits and Vegetables and Their Health Benefits via Modulation of Gut Microbiota. Comprehensive Reviews in Food Science and Food Safety, 2019, 18, 1514-1532.	11.7	123
3	Pectins from fruits: Relationships between extraction methods, structural characteristics, and functional properties. Trends in Food Science and Technology, 2021, 110, 39-54.	15.1	123
4	The structure–property relationships of acid- and alkali-extracted grapefruit peel pectins. Carbohydrate Polymers, 2020, 229, 115524.	10.2	88
5	Gold Nanobones Enhanced Ultrasensitive Surface-Enhanced Raman Scattering Aptasensor for Detecting <i>Escherichia coli</i> O157:H7. ACS Sensors, 2020, 5, 588-596.	7.8	78
6	AlkaliÂ+Âcellulase-extracted citrus pectins exhibit compact conformation and good fermentation properties. Food Hydrocolloids, 2020, 108, 106079.	10.7	55
7	Naringin Alleviates Atherosclerosis in ApoE ^{â€"/â€"} Mice by Regulating Cholesterol Metabolism Involved in Gut Microbiota Remodeling. Journal of Agricultural and Food Chemistry, 2020, 68, 12651-12660.	5.2	52
8	Nutrients and bioactives in citrus fruits: Different citrus varieties, fruit parts, and growth stages. Critical Reviews in Food Science and Nutrition, 2023, 63, 2018-2041.	10.3	49
9	Characterization of physical properties and electronic sensory analyses of citrus oil-based nanoemulsions. Food Research International, 2018, 109, 149-158.	6.2	43
10	Emulsifying stability properties of octenyl succinic anhydride (OSA) modified waxy starches with different molecular structures. Food Hydrocolloids, 2018, 85, 248-256.	10.7	42
11	Effect of mesoscopic structure of citrus pectin on its emulsifying properties: Compactness is more important than size. Journal of Colloid and Interface Science, 2020, 570, 80-88.	9.4	40
12	Encapsulation of Polymethoxyflavones in Citrus Oil Emulsion-Based Delivery Systems. Journal of Agricultural and Food Chemistry, 2017, 65, 1732-1739.	5.2	38
13	The stability of three different citrus oil-in-water emulsions fabricated by spontaneous emulsification. Food Chemistry, 2018, 269, 577-587.	8.2	38
14	Citrus Oil Emulsions Stabilized by Citrus Pectin: The Influence Mechanism of Citrus Variety and Acid Treatment. Journal of Agricultural and Food Chemistry, 2018, 66, 12978-12988.	5.2	34
15	Efficiency of four different dietary preparation methods in extracting functional compounds from dried tangerine peel. Food Chemistry, 2019, 289, 340-350.	8.2	34
16	New Marine Natural Products of Microbial Origin from 2010 to 2013. Chinese Journal of Organic Chemistry, 2013, 33, 1195.	1.3	34
17	<i>In-vivo</i> biotransformation of citrus functional components and their effects on health. Critical Reviews in Food Science and Nutrition, 2021, 61, 756-776.	10.3	30
18	Simultaneous determination of 14 bioactive citrus flavonoids using thin-layer chromatography combined with surface enhanced Raman spectroscopy. Food Chemistry, 2021, 338, 128115.	8.2	30

#	Article	IF	CITATIONS
19	Chemical Mapping of Essential Oils, Flavonoids and Carotenoids in Citrus Peels by Raman Microscopy. Journal of Food Science, 2017, 82, 2840-2846.	3.1	27
20	Effects of Preheating and Storage Temperatures on Aroma Profile and Physical Properties of Citrus-Oil Emulsions. Journal of Agricultural and Food Chemistry, 2017, 65, 7781-7789.	5.2	26
21	Four Citrus Flavanones Exert Atherosclerosis Alleviation Effects in ApoE ^{–/–} Mice <i>via</i> Different Metabolic and Signaling Pathways. Journal of Agricultural and Food Chemistry, 2021, 69, 5226-5237.	5.2	26
22	Effects of hydrosoluble calcium ions and organic acids on citrus oil emulsions stabilized with citrus pectin. Food Hydrocolloids, 2020, 100, 105413.	10.7	25
23	Characterization of polymethoxyflavone demethylation during drying processes of citrus peels. Food and Function, 2019, 10, 5707-5717.	4.6	24
24	New α-glucosidase inhibitors from a marine sponge-derived fungus, Aspergillus sp. OUCMDZ-1583. RSC Advances, 2015, 5, 68852-68863.	3.6	23
25	Effects of spray-drying temperature on the physicochemical properties and polymethoxyflavone loading efficiency of citrus oil microcapsules. LWT - Food Science and Technology, 2020, 133, 109954.	5.2	23
26	Infrared Drying as a Quick Preparation Method for Dried Tangerine Peel. International Journal of Analytical Chemistry, 2017, 2017, 1-11.	1.0	20
27	Upper digestion fate of citrus pectin-stabilized emulsion: An interfacial behavior perspective. Carbohydrate Polymers, 2021, 264, 118040.	10.2	19
28	Rapid screening for ricin toxin on letter papers using surface enhanced Raman spectroscopy. Talanta, 2017, 162, 552-557.	5.5	14
29	LC-Q-TOF-MS/MS detection of food flavonoids: principle, methodology, and applications. Critical Reviews in Food Science and Nutrition, 2023, 63, 3750-3770.	10.3	12
30	Simultaneous characterization of chemical structures and bioactivities of citrus-derived components using SERS barcodes. Food Chemistry, 2018, 240, 743-750.	8.2	10
31	Orange Pectin with Compact Conformation Effectively Alleviates Acute Colitis in Mice. Journal of Agricultural and Food Chemistry, 2022, 70, 1704-1714.	5.2	10
32	Identification of the key emulsifying components from the byproducts of garlic oil distillation. Food Hydrocolloids, 2022, 122, 107043.	10.7	6
33	Effects of Anaerobic Fermentation on Black Garlic Extract by Lactobacillus: Changes in Flavor and Functional Components. Frontiers in Nutrition, 2021, 8, 645416.	3.7	3