List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7114895/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nucleation mechanisms in a SiO2-Li2O-P2O5-ZrO2 biomedical glass-ceramic: Insights on crystallisation, residual glasses and Zr4+ structural environment. Journal of the European Ceramic Society, 2022, 42, 1762-1775.	5.7	16
2	Resistance-curve envelopes for dental lithium disilicate glass-ceramics. Journal of the European Ceramic Society, 2022, 42, 2516-2522.	5.7	6
3	Grasping the Lithium hype: Insights into modern dental Lithium Silicate glass-ceramics. Dental Materials, 2022, 38, 318-332.	3.5	54
4	Dimensional changes of CAD/CAM polymer crowns after water aging – An in vitro experiment. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 128, 105109.	3.1	1
5	Evaluation of wear behavior of dental restorative materials against zirconia in vitro. Dental Materials, 2022, 38, 778-788.	3.5	9
6	Coulometric titration of water content and uptake in CAD/CAM chairside composites. Dental Materials, 2022, 38, 789-796.	3.5	2
7	A split-Chevron-Notched-Beam sandwich specimen for fracture toughness testing of bonded interfaces. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 131, 105236.	3.1	2
8	Fracture toughness of 3Y-TZP ceramic measured by the Chevron-Notch Beam method: A round-robin study. Dental Materials, 2022, 38, 1128-1139.	3.5	6
9	Chemistry and Microstructure. , 2022, , 3-37.		2
10	Biaxial flexural strength of zirconia: A round robin test with 12 laboratories. Dental Materials, 2021, 37, 284-295.	3.5	15
11	Concurrent kinetics of crystallization and toughening in multicomponent biomedical SiO2-Li2O-P2O5-ZrO2 glass-ceramics. Journal of Non-Crystalline Solids, 2021, 554, 120607.	3.1	20
12	Viscosity and stickiness of dental resin composites at elevated temperatures. Dental Materials, 2021, 37, 413-422.	3.5	26
13	The breakdown of the Weibull behavior in dental zirconias. Journal of the American Ceramic Society, 2021, 104, 4819-4828.	3.8	10
14	Fractography of clinical failures of indirect resin composite endocrown and overlay restorations. Dental Materials, 2021, 37, e341-e359.	3.5	16
15	Mechanical degradation of contemporary CAD/CAM resin composite materials after water ageing. Dental Materials, 2021, 37, 1156-1167.	3.5	19
16	Characterization of Heat-Polymerized Monomer Formulations for Dental Infiltrated Ceramic Networks. Applied Sciences (Switzerland), 2021, 11, 7370.	2.5	2
17	Fracture toughness of dental incremental composite-composite interfaces at elevated temperatures. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 122, 104655.	3.1	2
18	Toughening by revitrification of Li2SiO3 crystals in Obsidian® dental glass-ceramic. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 124, 104739.	3.1	8

#	Article	IF	CITATIONS
19	Rising R-curves in particulate/fiber-reinforced resin composite layered systems. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 103, 103537.	3.1	20
20	Low-temperature degradation increases the cyclic fatigue resistance of 3Y-TZP in bending. Dental Materials, 2020, 36, 1086-1095.	3.5	15
21	Crack growth rates in lithium disilicates with bulk (mis)alignment of the Li2Si2O5 phase in the [001] direction. Journal of Non-Crystalline Solids, 2020, 532, 119877.	3.1	11
22	R-curve behavior of a short-fiber reinforced resin composite after water storage. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 104, 103674.	3.1	11
23	Sliding contact wear and subsurface damage of CAD/CAM materials against zirconia. Dental Materials, 2020, 36, 387-401.	3.5	35
24	Crack growth behavior of a biomedical polymer-ceramic interpenetrating scaffolds composite in the subcritical regimen. Engineering Fracture Mechanics, 2020, 231, 107014.	4.3	7
25	Cerâmica dentária: uma revisão de novos materiais e métodos de processamento Brazilian Journal of Implantology and Health Sciences, 2020, 2, 50-72.	0.1	Ο
26	Contemporary CAD/CAM Materials in Dentistry. Current Oral Health Reports, 2019, 6, 250-256.	1.6	2
27	Effect of sintering parameters on phase evolution and strength of dental lithium silicate glass-ceramics. Dental Materials, 2019, 35, 1360-1369.	3.5	14
28	Crack-healing during two-stage crystallization of biomedical lithium (di)silicate glass-ceramics. Dental Materials, 2019, 35, 1130-1145.	3.5	43
29	Fractographic analysis of lithium silicate crown failures during sintering. SAGE Open Medical Case Reports, 2019, 7, 2050313X1983896.	0.3	2
30	Phase characterization of lithium silicate biomedical glass-ceramics produced by two-stage crystallization. Journal of Non-Crystalline Solids, 2019, 510, 42-50.	3.1	27
31	Factors influencing development of residual stresses during crystallization firing in a novel lithium silicate glass-ceramic. Dental Materials, 2019, 35, 871-882.	3.5	18
32	In vitro lifetime of zirconium dioxideâ€based crowns veneered using Rapid Layer Technology. European Journal of Oral Sciences, 2019, 127, 179-186.	1.5	10
33	Chairside CAD/CAM materials. Part 3: Cyclic fatigue parameters and lifetime predictions. Dental Materials, 2018, 34, 910-921.	3.5	67
34	Fracture anisotropy in texturized lithium disilicate glass-ceramics. Journal of Non-Crystalline Solids, 2018, 481, 457-469.	3.1	39
35	Resistance curves of short-fiber reinforced methacrylate-based biomedical composites. Engineering Fracture Mechanics, 2018, 190, 146-158.	4.3	13
36	Fracture Toughness Testing of Dental Restoratives: a Critical Evaluation. Current Oral Health Reports, 2018, 5, 163-168.	1.6	7

#	Article	IF	CITATIONS
37	Fracture toughness testing of biomedical ceramic-based materials using beams, plates and discs. Journal of the European Ceramic Society, 2018, 38, 5533-5544.	5.7	51
38	Practical and theoretical considerations on the fracture toughness testing of dental restorative materials. Dental Materials, 2018, 34, 97-119.	3.5	63
39	Antagonist wear of monolithic zirconia crowns after 2Âyears. Clinical Oral Investigations, 2017, 21, 1165-1172.	3.0	77
40	ADM guidance—Ceramics: guidance to the use of fractography in failure analysis of brittle materials. Dental Materials, 2017, 33, 599-620.	3.5	133
41	ADM guidance-Ceramics: all-ceramic multilayer interfaces in dentistry. Dental Materials, 2017, 33, 585-598.	3.5	37
42	ADM guidance—Ceramics: Fracture toughness testing and method selection. Dental Materials, 2017, 33, 575-584.	3.5	76
43	Chairside CAD/CAM materials. Part 1: Measurement of elastic constants and microstructural characterization. Dental Materials, 2017, 33, 84-98.	3.5	287
44	Mixed-mode fracture toughness of texturized LS2 glass-ceramics using the three-point bending with eccentric notch test. Dental Materials, 2017, 33, 1473-1477.	3.5	12
45	ADM guidance-ceramics: Fatigue principles and testing. Dental Materials, 2017, 33, 1192-1204.	3.5	111
46	ADM research guidance papers. Dental Materials, 2017, 33, 967.	3.5	7
47	Self-adhesive resin cements: pH-neutralization, hydrophilicity, and hygroscopic expansion stress. Clinical Oral Investigations, 2017, 21, 1735-1741.	3.0	28
48	Chairside CAD/CAM materials. Part 2: Flexural strength testing. Dental Materials, 2017, 33, 99-109.	3.5	227
49	Dental ceramics: a review of new materials and processing methods. Brazilian Oral Research, 2017, 31, e58.	1.4	162
50	Repair Bond Strength of Aged Resin Composite after Different Surface and Bonding Treatments. Materials, 2016, 9, 547.	2.9	54
51	Spatial distribution of residual stresses in glass-ZrO 2 sphero-cylindrical bilayers. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 60, 535-546.	3.1	13
52	Descriptions of crack growth behaviors in glass–ZrO2 bilayers under thermal residual stresses. Dental Materials, 2016, 32, 1165-1176.	3.5	9
53	Removal of Radioactively Marked Calcium Hydroxide fromÂthe Root Canal: Influence of Volume of Irrigation andÂActivation. Journal of Endodontics, 2016, 42, 637-640.	3.1	18
54	Fatigue behavior of Y-TZP ceramic after surface treatments. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 57, 149-156.	3.1	43

#	Article	IF	CITATIONS
55	Fracture Rates and Lifetime Estimations of CAD/CAM All-ceramic Restorations. Journal of Dental Research, 2016, 95, 67-73.	5.2	113
56	Fracture toughness mode mixity at the connectors of monolithic 3Y-TZP and LS2 dental bridge constructs. Journal of the European Ceramic Society, 2015, 35, 3701-3711.	5.7	22
57	Characterization of residual stresses in zirconia veneered bilayers assessed via sharp and blunt indentation. Dental Materials, 2015, 31, 948-957.	3.5	25
58	Bonding performance of universal adhesives in different etching modes. Journal of Dentistry, 2014, 42, 800-807.	4.1	234
59	Antibacterial properties of metal and metalloid ions in chronic periodontitis and peri-implantitis therapy. Acta Biomaterialia, 2014, 10, 3795-3810.	8.3	94
60	Mechanical fatigue degradation of ceramics versus resin composites for dental restorations. Dental Materials, 2014, 30, 424-432.	3.5	150
61	Are linear elastic material properties relevant predictors of the cyclic fatigue resistance of dental resin composites?. Dental Materials, 2014, 30, 381-391.	3.5	36
62	In vivo shell-like fractures of veneered-ZrO2 fixed dental prostheses. Case Studies in Engineering Failure Analysis, 2014, 2, 91-99.	1.2	15
63	Strengthening of dental adhesives via particle reinforcement. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 37, 100-108.	3.1	60
64	Fracture toughness and cyclic fatigue resistance of resin composites with different filler size distributions. Dental Materials, 2014, 30, 742-751.	3.5	30
65	Thermal-induced residual stresses affect the lifetime of zirconia–veneer crowns. Dental Materials, 2013, 29, 181-190.	3.5	75
66	Thermal-induced residual stresses affect the fractographic patterns of zirconia-veneer dental prostheses. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 21, 167-177.	3.1	32
67	Factors Involved in Mechanical Fatigue Degradation of Dental Resin Composites. Journal of Dental Research, 2013, 92, 584-591.	5.2	114
68	A Photoelastic Assessment of Residual Stresses in Zirconia-Veneer Crowns. Journal of Dental Research, 2012, 91, 316-320.	5.2	60
69	Tailoring of physical properties in highly filled experimental nanohybrid resin composites. Dental Materials, 2011, 27, 664-669.	3.5	34
70	The Influence of Particle Size on the Mechanical Properties of Dental Glass Ionomer Cements. Advanced Engineering Materials, 2010, 12, B684.	3.5	6
71	The effect of resin composite pre-heating on monomer conversion and polymerization shrinkage. Dental Materials, 2009, 25, 514-519.	3.5	79
72	Hydroxylation of dental zirconia surfaces: Characterization and bonding potential. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2008, 87B, 461-467.	3.4	81

#	Article	IF	CITATIONS
73	Osseointegration of Chemically Modified Titanium Surfaces: An <i>in Vivo</i> Study. Advanced Engineering Materials, 2008, 10, B61.	3.5	10
74	Correlation of in vitro fatigue data and in vivo clinical performance of a glassceramic material. Dental Materials, 2008, 24, 39-44.	3.5	80
75	Influence of surface roughness on mechanical strength of resin composite versus glass ceramic materials. Dental Materials, 2008, 24, 250-256.	3.5	85
76	Resin tags do not contribute to dentin adhesion in self-etching adhesives. Journal of Adhesive Dentistry, 2008, 10, 97-103.	0.5	41
77	Strength and fatigue performance versus filler fraction of different types of direct dental restoratives. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2006, 76B, 114-120.	3.4	81
78	Calcium release and pH-characteristics of calcium hydroxide plus points. International Endodontic Journal, 2005, 38, 683-689.	5.0	24
79	The effect of different light-curing units on fatigue behavior and degree of conversion of a resin composite. Dental Materials, 2005, 21, 608-615.	3.5	105
80	Time-dependent strength and fatigue resistance of dental direct restorative materials. Journal of Materials Science: Materials in Medicine, 2003, 14, 1047-1053.	3.6	40
81	Flexural fatigue behavior of resin composite dental restoratives. Dental Materials, 2003, 19, 435-440.	3.5	84
82	Reactive fibre reinforced glass ionomer cements. Biomaterials, 2003, 24, 2901-2907.	11.4	42
83	Lifetime prediction of CAD/CAM dental ceramics. Journal of Biomedical Materials Research Part B, 2002, 63, 780-785.	3.1	84