
David C Venerus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7114838/publications.pdf Version: 2024-02-01

DAVID C VENERUS

#	Article	IF	CITATIONS
1	The dynamics of parallel-plate and coneâ \in "plate flows. Physics of Fluids, 2021, 33, .	4.0	21
2	Thermal conductivity of amorphous polymers and its dependence on molecular weight. Polymer, 2021, 228, 123881.	3.8	10
3	On using the anisotropy in the thermal resistance of solid–fluid interfaces to more effectively cool nano-electronics. Molecular Simulation, 2020, 46, 162-167.	2.0	1
4	Immobilized RGD concentration and proteolytic degradation synergistically enhance vascular sprouting within hydrogel scaffolds of varying modulus. Journal of Biomaterials Science, Polymer Edition, 2020, 31, 324-349.	3.5	10
5	Polymer rheology predictions from first principles using the slip-link model. Journal of Rheology, 2020, 64, 1035-1043.	2.6	17
6	Characterization of Biodegradable Microsphere-Hydrogel Ocular Drug Delivery System for Controlled and Extended Release of Ranibizumab. Translational Vision Science and Technology, 2019, 8, 12.	2.2	47
7	Thermal conductivity of poly(L‣actic Acid) subjected to elongational deformations. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 547-553.	2.1	4
8	Determining the Dilution Exponent for Entangled 1,4-Polybutadienes Using Blends of Near-Monodisperse Star with Unentangled, Low Molecular Weight Linear Polymers. Macromolecules, 2019, 52, 1757-1771.	4.8	8
9	Equibiaxial elongational rheology of entangled polystyrene melts. Journal of Rheology, 2019, 63, 157-165.	2.6	5
10	Reprocessable Polyhydroxyurethane Network Composites: Effect of Filler Surface Functionality on Cross-link Density Recovery and Stress Relaxation. ACS Applied Materials & Interfaces, 2019, 11, 2398-2407.	8.0	103
11	THERMAL TRANSPORT IN CROSS-LINKED ELASTOMERS SUBJECTED TO ELONGATIONAL DEFORMATIONS. Rubber Chemistry and Technology, 2019, 92, 639-652.	1.2	5
12	Linear viscoelastic behavior of bidisperse polystyrene blends: experiments and slip-link predictions. Rheologica Acta, 2018, 57, 327-338.	2.4	16
13	Evidence of Deformation-Dependent Heat Capacity and Energetic Elasticity in a Cross-Linked Elastomer Subjected to Uniaxial Elongation. Macromolecules, 2018, 51, 589-597.	4.8	6
14	Squeeze flows in liquid films bound by porous disks. Journal of Fluid Mechanics, 2018, 855, 860-881.	3.4	7
15	Protease-Sensitive Hydrogel Biomaterials with Tunable Modulus and Adhesion Ligand Gradients for 3D Vascular Sprouting. Biomacromolecules, 2018, 19, 4168-4181.	5.4	21
16	A novel technique for conducting creep experiments in equibiaxial elongation. Rheologica Acta, 2017, 56, 591-596.	2.4	2
17	Tears of wine: new insights on an old phenomenon. Scientific Reports, 2015, 5, 16162.	3.3	48
18	Equibiaxial elongational viscosity measurements of commercial polymer melts. Polymer Engineering and Science, 2015, 55, 1012-1017.	3.1	7

DAVID C VENERUS

#	Article	IF	CITATIONS
19	Investigation of Anisotropic Thermal Conductivity in Polymers Using Infrared Thermography. Journal of Heat Transfer, 2014, 136, .	2.1	5
20	Thermodynamic approach to interfacial transport phenomena: Single omponent systems. AICHE Journal, 2014, 60, 1424-1433.	3.6	9
21	Flow field visualization of entangled polybutadiene solutions under nonlinear viscoelastic flow conditions. Journal of Rheology, 2013, 57, 1411-1428.	2.6	57
22	Anisotropic thermal conduction in polymer melts in uniaxial elongation flows. Journal of Rheology, 2013, 57, 427-439.	2.6	26
23	Anisotropic thermal transport in a crosslinked polyisoprene rubber subjected to uniaxial elongation. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 1638-1644.	2.1	14
24	Molecular origins of anisotropy in the thermal conductivity of deformed polymer melts: stress versus orientation contributions. Soft Matter, 2012, 8, 11781.	2.7	21
25	Investigation of thermal transport in colloidal silica dispersions (nanofluids). Journal of Nanoparticle Research, 2011, 13, 3075-3083.	1.9	5
26	Stress Relaxation in Polymer Melts Following Equibiaxial Step Strain. Macromolecules, 2010, 43, 5874-5880.	4.8	14
27	Anisotropic Thermal Conductivity in Cross-Linked Polybutadienes Subjected to Uniaxial Elongation. Macromolecules, 2009, 42, 2594-2598.	4.8	18
28	A Continuous Lubricated Squeezing Flow Technique to Study the Rheological Behavior of Polymer Melts in Equibiaxial Elongational Flow. AIP Conference Proceedings, 2008, , .	0.4	0
29	Free Surface Effects on Normal Stress Measurements in Cone and Plate Flow. Applied Rheology, 2007, 17, 36494-1-36494-6.	5.2	9
30	Laminar capillary flow of compressible viscous fluids. Journal of Fluid Mechanics, 2006, 555, 59.	3.4	34
31	Simultaneous stress and birefringence measurements during uniaxial elongation of polystyrene melts with narrow molecular weight distribution. Rheologica Acta, 2005, 45, 83-91.	2.4	77
32	Measurements of Flow-Induced Anisotropic Thermal Conduction in a Polyisobutylene Melt Following Step Shear Flow. Macromolecules, 2005, 38, 6210-6215.	4.8	18
33	A critical evaluation of step strain flows of entangled linear polymer liquids. Journal of Rheology, 2005, 49, 277-295.	2.6	51
34	Anisotropic Thermal Conduction in a Polymer Liquid Subjected to Shear Flow. Physical Review Letters, 2004, 93, 098301.	7.8	28
35	Measurement of anisotropic energy transport in flowing polymers by using a holographic technique. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13142-13146.	7.1	23
36	Evaluation of rheological constitutive equations for branched polymers in step shear strain flows. Rheologica Acta, 2003, 42, 123-131.	2.4	23

DAVID C VENERUS

#	Article	IF	CITATIONS
37	Pom–Pom theory evaluation in double-step strain flows. Journal of Rheology, 2003, 47, 413-427.	2.6	15
38	Equibiaxial extensional flow of polymer melts via lubricated squeezing flow. I. Experimental analysis. Rheologica Acta, 2000, 39, 444-451.	2.4	43
39	Equibiaxial extensional flow of polymer melts via lubricated squeezing flow. II. Flow modeling. Rheologica Acta, 2000, 39, 574-582.	2.4	27
40	Relaxation of Anisotropic Thermal Diffusivity in a Polymer Melt Following Step Shear Strain. Physical Review Letters, 1999, 82, 366-369.	7.8	37
41	Dynamic Shear Modulus of Tricresyl Phosphate and Squalane. Journal of Physical Chemistry B, 1999, 103, 4066-4070.	2.6	64
42	Transport analysis of diffusion-induced bubble growth and collapse in viscous liquids. AICHE Journal, 1997, 43, 2948-2959.	3.6	32
43	Diffusion of organic solvents in isobutylene-based polymers. Korean Journal of Chemical Engineering, 1996, 13, 255-260.	2.7	1