Lorraine O'Driscoll

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7114291/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A method of separating extracellular vesicles from blood shows potential clinical translation, and reveals extracellular vesicle cargo gremlin-1 as a diagnostic biomarker. Translational Oncology, 2022, 15, 101274.	1.7	5
2	Miniaturized In Vitro Assays to Study Cellular Phenotypic Characteristics: Proliferation, Migration, Invasion, and Anoikis-Resistance. Methods in Molecular Biology, 2021, 2283, 225-232.	0.4	1
3	Extracellular vesicles in blood: are they viable as diagnostic and predictive tools in breast cancer?. Drug Discovery Today, 2021, 26, 778-785.	3.2	8
4	A call for the standardised reporting of factors affecting the exogenous loading of extracellular vesicles with therapeutic cargos. Advanced Drug Delivery Reviews, 2021, 173, 479-491.	6.6	68
5	Extracellular Vesicle Functionalized Melt Electrowritten Scaffolds for Bone Tissue Engineering. Advanced NanoBiomed Research, 2021, 1, 2100037.	1.7	7
6	Evidence for the Need to Evaluate More Than One Source of Extracellular Vesicles, Rather Than Single or Pooled Samples Only, When Comparing Extracellular Vesicles Separation Methods. Cancers, 2021, 13, 4021.	1.7	4
7	Optimisation and comparison of orthogonal methods for separation and characterisation of extracellular vesicles to investigate how representative infant milk formula is of milk. Food Chemistry, 2021, 353, 129309.	4.2	15
8	Extracellular vesicle separation from milk and infant milk formula using acid precipitation and ultracentrifugation. STAR Protocols, 2021, 2, 100821.	0.5	9
9	Pre-Clinical In Vitro Models Used in Cancer Research: Results of a Worldwide Survey. Cancers, 2021, 13, 6033.	1.7	24
10	Updating MISEV: Evolving the minimal requirements for studies of extracellular vesicles. Journal of Extracellular Vesicles, 2021, 10, e12182.	5.5	147
11	Inhibiting extracellular vesicles formation and release: a review of EV inhibitors. Journal of Extracellular Vesicles, 2020, 9, 1703244.	5.5	375
12	Human bone marrow stem/stromal cell osteogenesis is regulated via mechanically activated osteocyte-derived extracellular vesicles. Stem Cells Translational Medicine, 2020, 9, 1431-1447.	1.6	52
13	When E-Cadherin Becomes Unstuck in Cancer. New England Journal of Medicine, 2020, 383, 871-873.	13.9	9
14	The future of Extracellular Vesicles as Theranostics – an ISEV meeting report. Journal of Extracellular Vesicles, 2020, 9, 1809766.	5.5	77
15	Extracellular vesicles report on the MET status of their cells of origin regardless of the method used for their isolation. Scientific Reports, 2020, 10, 19020.	1.6	4
16	International Society for Extracellular Vesicles and International Society for Cell and Gene Therapy statement on extracellular vesicles from mesenchymal stromal cells and other cells: considerations for potential therapeutic agents to suppress coronavirus disease-19. Cytotherapy, 2020, 22, 482-485.	0.3	94
17	Extracellular vesicles from mesenchymal stem cells as a Covid-19 treatment. Drug Discovery Today, 2020, 25, 1124-1125.	3.2	41
18	Mesenchymal Stem Cell Derived Extracellular Vesicles for Tissue Engineering and Regenerative Medicine Applications. Cells, 2020, 9, 991.	1.8	178

#	Article	IF	CITATIONS
19	Considerations towards a roadmap for collection, handling and storage of blood extracellular vesicles. Journal of Extracellular Vesicles, 2019, 8, 1647027.	5.5	96
20	2-Deoxy-D-Glucose inhibits aggressive triple-negative breast cancer cells by targeting glycolysis and the cancer stem cell phenotype. Scientific Reports, 2019, 9, 3788.	1.6	73
21	Can hi-jacking hypoxia inhibit extracellular vesicles in cancer?. Drug Discovery Today, 2018, 23, 1267-1273.	3.2	10
22	miR-758-3p: a blood-based biomarker that's influence on the expression of CERP/ABCA1 may contribute to the progression of obesity to metabolic syndrome. Oncotarget, 2018, 9, 9379-9390.	0.8	7
23	Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 2018, 7, 1535750.	5.5	6,961
24	Extracellular vesicles and anti-cancer drug resistance. Biochimica Et Biophysica Acta: Reviews on Cancer, 2018, 1870, 123-136.	3.3	174
25	European Network on Microvesicles and Exosomes in Health and Disease (ME-HaD). European Journal of Pharmaceutical Sciences, 2017, 98, 1-3.	1.9	10
26	EV-TRACK: transparent reporting and centralizing knowledge in extracellular vesicle research. Nature Methods, 2017, 14, 228-232.	9.0	886
27	Neratinib resistance and cross-resistance to other HER2-targeted drugs due to increased activity of metabolism enzyme cytochrome P4503A4. British Journal of Cancer, 2017, 116, 620-625.	2.9	40
28	Neuromedin U alters bioenergetics and expands the cancer stem cell phenotype in HER2â€positive breast cancer. International Journal of Cancer, 2017, 140, 2771-2784.	2.3	21
29	Resistance to HER2-targeted anti-cancer drugs is associated with immune evasion in cancer cells and their derived extracellular vesicles. Oncolmmunology, 2017, 6, e1362530.	2.1	100
30	Profiling Circulating miRNAs from the Plasma of Individuals with Metabolic Syndrome. Methods in Molecular Biology, 2017, 1509, 141-149.	0.4	3
31	MicroRNA Profiling of Exosomes. Methods in Molecular Biology, 2017, 1509, 37-46.	0.4	11
32	The relevance of using 3D cell cultures, in addition to 2D monolayer cultures, when evaluating breast cancer drug sensitivity and resistance. Oncotarget, 2016, 7, 45745-45756.	0.8	214
33	Blood-Based Biomarkers for Metabolic Syndrome. Trends in Endocrinology and Metabolism, 2016, 27, 363-374.	3.1	66
34	Evidence-Based Clinical Use of Nanoscale Extracellular Vesicles in Nanomedicine. ACS Nano, 2016, 10, 3886-3899.	7.3	397
35	Biological properties of extracellular vesicles and their physiological functions. Journal of Extracellular Vesicles, 2015, 4, 27066.	5.5	3,973
36	Applying extracellular vesicles based therapeutics in clinical trials – an ISEV position paper. Journal of Extracellular Vesicles, 2015, 4, 30087.	5.5	1,020

#	Article	IF	CITATIONS
37	miR-134 in extracellular vesicles reduces triple-negative breast cancer aggression and increases drug sensitivity. Oncotarget, 2015, 6, 32774-32789.	0.8	203
38	Expanding on Exosomes and Ectosomes in Cancer. New England Journal of Medicine, 2015, 372, 2359-2362.	13.9	100
39	Metabolic syndrome: a closer look at the growing epidemic and its associated pathologies. Obesity Reviews, 2015, 16, 1-12.	3.1	1,177
40	Neuromedin U: A Multifunctional Neuropeptide with Pleiotropic Roles. Clinical Chemistry, 2015, 61, 471-482.	1.5	96
41	Dairy proteins, dairy lipids, and postprandial lipemia in persons with abdominal obesity (DairyHealth): a 12-wk, randomized, parallel-controlled, double-blinded, diet intervention study. American Journal of Clinical Nutrition, 2015, 101, 870-878.	2.2	43
42	The Role of Exosomes in Breast Cancer. Clinical Chemistry, 2015, 61, 1457-1465.	1.5	105
43	Analysis of Changes in Phosphorylation of Receptor Tyrosine Kinases: Antibody Arrays. Methods in Molecular Biology, 2015, 1233, 15-23.	0.4	5
44	Receptor Tyrosine Kinases and Drug Resistance: Development and Characterization of In Vitro Models of Resistance to RTK Inhibitors. Methods in Molecular Biology, 2015, 1233, 169-180.	0.4	9
45	Receptor Tyrosine Kinase Targeting in Multicellular Spheroids. Methods in Molecular Biology, 2015, 1233, 161-168.	0.4	1
46	Neuromedin U to increase IL-6 levels and to expand cancer stem cells in HER2-positive breast cancer cells Journal of Clinical Oncology, 2015, 33, 614-614.	0.8	0
47	Neuromedin U: A Candidate Biomarker and Therapeutic Target to Predict and Overcome Resistance to HER-Tyrosine Kinase Inhibitors. Cancer Research, 2014, 74, 3821-3833.	0.4	34
48	miR-630 targets IGF1R to regulate response to HER-targeting drugs and overall cancer cell progression in HER2 over-expressing breast cancer. Molecular Cancer, 2014, 13, 71.	7.9	66
49	miRâ€34a is an intracellular and exosomal predictive biomarker for response to docetaxel with clinical relevance to prostate cancer progression. Prostate, 2014, 74, 1320-1334.	1.2	188
50	Predictive biomarkers for dasatinib treatment in melanoma. Oncoscience, 2014, 1, 158-166.	0.9	8
51	EGFR and HER2 inhibition in pancreatic cancer. Investigational New Drugs, 2013, 31, 558-566.	1.2	28
52	Exosomes from triple-negative breast cancer cells can transfer phenotypic traits representing their cells of origin to secondary cells. European Journal of Cancer, 2013, 49, 1845-1859.	1.3	192
53	Correlating transcriptional networks to breast cancer survival: a large-scale coexpression analysis. Carcinogenesis, 2013, 34, 2300-2308.	1.3	359
54	Three-dimensional cell culture: the missing link in drug discovery. Drug Discovery Today, 2013, 18, 240-249.	3.2	983

#	Article	IF	CITATIONS
55	Comparative antiproliferative effects of iniparib and olaparib on a panel of triple-negative and non-triple-negative breast cancer cell lines. Cancer Biology and Therapy, 2013, 14, 537-545.	1.5	35
56	Global analysis of serum microRNAs as potential biomarkers for lung adenocarcinoma. Cancer Biology and Therapy, 2013, 14, 1104-1112.	1.5	66
57	ISEV position paper: extracellular vesicle RNA analysis and bioinformatics. Journal of Extracellular Vesicles, 2013, 2, .	5.5	126
58	The potential of miR-630, an IGF1R regulator, as a predictive biomarker for HER2-targeted drugs Journal of Clinical Oncology, 2013, 31, 620-620.	0.8	0
59	Platelets increase survival of adenocarcinoma cells challenged with anticancer drugs: mechanisms and implications for chemoresistance. British Journal of Pharmacology, 2012, 167, 787-804.	2.7	68
60	Docetaxel-Resistance in Prostate Cancer: Evaluating Associated Phenotypic Changes and Potential for Resistance Transfer via Exosomes. PLoS ONE, 2012, 7, e50999.	1.1	367
61	The use of <scp>LC</scp> â€ <scp>MS</scp> to identify differentially expressed proteins in docetaxelâ€resistant prostate cancer cell lines. Proteomics, 2012, 12, 2115-2126.	1.3	13
62	MAGEâ€Ð4B is a novel marker of poor prognosis and potential therapeutic target involved in breast cancer tumorigenesis. International Journal of Cancer, 2012, 130, 1991-2002.	2.3	26
63	Isosteviol Has Beneficial Effects on Palmitate-Induced α-Cell Dysfunction and Gene Expression. PLoS ONE, 2012, 7, e34361.	1.1	25
64	Isolation, Structure Elucidation, and Cytotoxic Evaluation of Furanonaphthoquinones from in Vitro Plantlets and Cultures ofStreptocarpus dunnii. Journal of Natural Products, 2011, 74, 82-85.	1.5	12
65	Intracellular and Extracellular MicroRNAs in Breast Cancer. Clinical Chemistry, 2011, 57, 18-32.	1.5	197
66	Isolation of Exosomes for Subsequent mRNA, MicroRNA, and Protein Profiling. Methods in Molecular Biology, 2011, 784, 181-195.	0.4	89
67	Characterisation and manipulation of docetaxel resistant prostate cancer cell lines. Molecular Cancer, 2011, 10, 126.	7.9	170
68	Reverse-Transcriptase Polymerase Chain Reaction to Detect Extracellular mRNAs. Methods in Molecular Biology, 2011, 784, 15-25.	0.4	4
69	MicroRNA Expression Analysis: Techniques Suitable for Studies of Intercellular and Extracellular MicroRNAs. Methods in Molecular Biology, 2011, 784, 99-107.	0.4	6
70	Western Blotting Analysis as a Tool to Study Receptor Tyrosine Kinases. Methods in Molecular Biology, 2011, 784, 109-121.	0.4	2
71	Analysis of Gene Expression as Relevant to Cancer Cells and Circulating Tumour Cells. Methods in Molecular Biology, 2011, 784, 55-75.	0.4	0
72	Relevance of circulating tumor cells, extracellular nucleic acids, and exosomes in breast cancer. Breast Cancer Research and Treatment, 2010, 123, 613-625.	1.1	67

5

#	Article	IF	CITATIONS
73	Tyrosine kinase inhibitors potentiate the cytotoxicity of MDR-substrate anticancer agents independent of growth factor receptor status in lung cancer cell lines. Investigational New Drugs, 2010, 28, 433-444.	1.2	37
74	Membrane transport proteins in human melanoma: associations with tumour aggressiveness and metastasis. British Journal of Cancer, 2010, 102, 1157-1162.	2.9	37
75	Decreasing Txnip mRNA and Protein Levels in Pancreatic MIN6 Cells Reduces Reactive Oxygen Species and Restores Glucose Regulated Insulin Secretion. Cellular Physiology and Biochemistry, 2010, 25, 667-674.	1.1	25
76	Identification of microRNAs with a role in glucose stimulated insulin secretion by expression profiling of MIN6 cells. Biochemical and Biophysical Research Communications, 2010, 396, 457-462.	1.0	68
77	TMEM25, REPS2 and Meis 1: Favourable Prognostic and Predictive Biomarkers for Breast Cancer. Tumor Biology, 2009, 30, 200-209.	0.8	41
78	Breast Cancer: Understanding Sensitivity and Resistance to Chemotherapy and Targeted Therapies to Aid in Personalised Medicine. Current Cancer Drug Targets, 2009, 9, 398-418.	0.8	48
79	Editorial [Hot Topic: Mechanisms of Drug Sensitivity and Resistance in Cancer (Guest Editor: Lorraine) Tj ETQq1	l 0.784314 0.8	l rgBT /Overl
80	Expression of multidrug resistance markers ABCB1 (MDR-1/P-gp) and ABCC1 (MRP-1) in renal cell carcinoma. BMC Urology, 2009, 9, 6.	0.6	77
81	Prevalence and prognostic and predictive relevance of PRAME in breast cancer. Breast Cancer Research and Treatment, 2008, 109, 359-365.	1.1	65
82	Drug metabolism-related genes as potential biomarkers: analysis of expression in normal and tumour breast tissue. Breast Cancer Research and Treatment, 2008, 110, 521-530.	1.1	25
83	Proteomic analysis of conditioned media from glucose responsive and glucose nonâ€responsive phenotypes reveals a panel of secreted proteins associated with beta cell dysfunction. Electrophoresis, 2008, 29, 4141-4149.	1.3	14
84	Molecular medicine of microRNAs: structure, function and implications for diabetes. Expert Reviews in Molecular Medicine, 2008, 10, e24.	1.6	61
85	SNIP/p140Cap mRNA expression is an unfavourable prognostic factor in breast cancer and is not expressed in normal breast tissue. British Journal of Cancer, 2008, 98, 1641-1645.	2.9	14
86	Feasibility and relevance of global expression profiling of gene transcripts in serum from breast cancer patients using whole genome microarrays and quantitative RT-PCR. Cancer Genomics and Proteomics, 2008, 5, 94-104.	1.0	16
87	Drug resistance in cancer – searching for mechanisms, markers and therapeutic agents. Expert Opinion on Drug Metabolism and Toxicology, 2007, 3, 805-817.	1.5	51
88	Detection of Amplifiable mRNA Extracellular to Insulin-Producing Cells: Potential for Predicting Beta Cell Mass and Function. Clinical Chemistry, 2007, 53, 1936-1944.	1.5	15
89	Directed Differentiation of Mouse Embryonic Stem Cells into Pancreatic-Like or Neuronal- and Glial-Like Phenotypes. Tissue Engineering, 2007, 13, 2419-2430.	4.9	20
90	2â€D difference gel electrophoresis of the lung squamous cell carcinoma <i>versus</i> normal sera demonstrates consistent alterations in the levels of ten specific proteins. Electrophoresis, 2007, 28, 4302-4310.	1.3	71

#	Article	IF	CITATIONS
91	Detecting de novo insulin synthesis in embryonic stem cell-derived populations. Experimental Cell Research, 2007, 313, 1405-1414.	1.2	7
92	Extracellular nucleic acids and their potential as diagnostic, prognostic and predictive biomarkers. Anticancer Research, 2007, 27, 1257-65.	0.5	42
93	A microarray approach to translational medicine in breast cancer: how representative are cell line models of clinical conditions?. Anticancer Research, 2007, 27, 1295-300.	0.5	8
94	Phenotypic and global gene expression profile changes between low passage and high passage MIN-6 cells. Journal of Endocrinology, 2006, 191, 665-676.	1.2	58
95	Investigation of the molecular profile of basal cell carcinoma using whole genome microarrays. Molecular Cancer, 2006, 5, 74.	7.9	59
96	Proteomic screening of glucose-responsive and glucose non-responsive MIN-6 beta cells reveals differential expression of proteins involved in protein folding, secretion and oxidative stress. Proteomics, 2006, 6, 6578-6587.	1.3	49
97	Evaluation of recombinant human transferrin (DeltaFerrinTM) as an iron chelator in serum-free media for mammalian cell culture. Cytotechnology, 2006, 51, 29-37.	0.7	20
98	A phase I clinical and pharmacokinetic study of the multi-drug resistance protein-1 (MRP-1) inhibitor sulindac, in combination with epirubicin in patients with advanced cancer. Cancer Chemotherapy and Pharmacology, 2006, 59, 79-87.	1.1	55
99	The development and validation of the Virtual Tissue Matrix, a software application that facilitates the review of tissue microarrays on line. BMC Bioinformatics, 2006, 7, 256.	1.2	13
100	Biomarkers and Multiple Drug Resistance in Breast Cancer. Current Cancer Drug Targets, 2006, 6, 365-384.	0.8	112
101	The emerging world of microRNAs. Anticancer Research, 2006, 26, 4271-8.	0.5	26
102	Gene Expression Microarray Technology: Some Applications in Lung Cancer Research. Cancer Genomics and Proteomics, 2006, 3, 197-202.	1.0	0
103	Detection of Specific mRNAs in Culture Medium Conditioned by Human Tumour Cells: Potential for New Class of Cancer Biomarkers in Serum. Cancer Genomics and Proteomics, 2005, 2, 43-52.	1.0	3
104	Enhancedin vitro invasiveness and drug resistance with altered gene expression patterns in a human lung carcinoma cell line after pulse selection with anticancer drugs. International Journal of Cancer, 2004, 111, 484-493.	2.3	35
105	Investigation of MRP-1 protein and MDR-1 P-glycoprotein expression in invasive breast cancer: A prognostic study. International Journal of Cancer, 2004, 112, 286-294.	2.3	89
106	Expression in murine teratocarcinoma f9 cells of transcription factors involved in pancreas development. Transplantation Proceedings, 2004, 36, 1151-1158.	0.3	1
107	Mechanisms associated with loss of glucose responsiveness in beta cells. Transplantation Proceedings, 2004, 36, 1159-1162.	0.3	21
108	Characterisation of BHK-21 cells engineered to secrete human insulin. Cytotechnology, 2003, 41, 11-21.	0.7	3

#	Article	IF	CITATIONS
109	Challenges in molecular analysis for individualized cancer therapy. Drug Discovery Today, 2003, 8, 531.	3.2	2
110	Prognostic importance of survivin in breast cancer. British Journal of Cancer, 2003, 88, 1077-1083.	2.9	224
111	Lack of prognostic significance of survivin, survivin-ΔEx3, survivin-2B, galectin-3, bag-1, bax-α and MRP-1 mRNAs in breast cancer. Cancer Letters, 2003, 201, 225-236.	3.2	63
112	Survivin: Role in Normal Cells and in Pathological Conditions. Current Cancer Drug Targets, 2003, 3, 131-152.	0.8	73
113	ENGINEERING VERO CELLS TO SECRETE HUMAN INSULIN. In Vitro Cellular and Developmental Biology - Animal, 2002, 38, 146.	0.7	8
114	Galectin-3 expression alters adhesion, motility and invasion in a lung cell line (DLKP), in vitro. Anticancer Research, 2002, 22, 3117-25.	0.5	45
115	Isolation from a human MDR lung cell line of multiple clonal subpopulations which exhibit significantly different drug resistance. , 1997, 71, 907-915.		27
116	The use of reverse transcriptase-polymerase chain reaction (RT-PCR) to investigate specific gene expression in multidrug-resistant cells. Cytotechnology, 1993, 12, 289-314.	0.7	40