David Shore

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7113477/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Purification and cloning of a DNA binding protein from yeast that binds to both silencer and activator elements. Cell, 1987, 51, 721-732.	28.9	683
2	Evidence that a complex of SIR proteins interacts with the silencer and telomere-binding protein RAP1 Genes and Development, 1994, 8, 2257-2269.	5.9	522
3	A Protein-Counting Mechanism for Telomere Length Regulation in Yeast. Science, 1997, 275, 986-990.	12.6	470
4	A RAP1-interacting protein involved in transcriptional silencing and telomere length regulation Genes and Development, 1992, 6, 801-814.	5.9	469
5	DNA flexibility studied by covalent closure of short fragments into circles Proceedings of the National Academy of Sciences of the United States of America, 1981, 78, 4833-4837.	7.1	467
6	Energetics of DNA twisting. Journal of Molecular Biology, 1983, 170, 957-981.	4.2	396
7	A novel Rap1p-interacting factor, Rif2p, cooperates with Rif1p to regulate telomere length in Saccharomyces cerevisiae Genes and Development, 1997, 11, 748-760.	5.9	379
8	Chromosomal landscape of nucleosome-dependent gene expression and silencing in yeast. Nature, 1999, 402, 418-421.	27.8	364
9	Involvement of the silencer and UAS binding protein RAP1 in regulation of telomere length. Science, 1990, 250, 549-553.	12.6	344
10	Growth control and ribosome biogenesis. Current Opinion in Cell Biology, 2009, 21, 855-863.	5.4	316
11	RAP1: a protean regulator in yeast. Trends in Genetics, 1994, 10, 408-412.	6.7	294
12	Cingulin Contains Globular and Coiled-Coil Domains and Interacts with Zo-1, Zo-2, Zo-3, and Myosin. Journal of Cell Biology, 1999, 147, 1569-1582.	5.2	267
13	Separation of transcriptional activation and silencing functions of the RAP1-encoded repressor/activator protein 1: isolation of viable mutants affecting both silencing and telomere length Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 7749-7753.	7.1	243
14	Energetics of DNA twisting. Journal of Molecular Biology, 1983, 170, 983-1007.	4.2	240
15	Identification of silencer binding proteins from yeast: possible roles in SIR control and DNA replication. EMBO Journal, 1987, 6, 461-467.	7.8	223
16	Targeting of SIR1 protein establishes transcriptional silencing at HM loci and telomeres in yeast. Cell, 1993, 75, 531-541.	28.9	212
17	Transcriptional regulation in the yeast life cycle. Science, 1987, 237, 1162-1170.	12.6	207
18	Action of a RAP1 carboxy-terminal silencing domain reveals an underlying competition between HMR and telomeres in yeast Genes and Development, 1995, 9, 370-384.	5.9	204

#	Article	IF	CITATIONS
19	Growth-regulated recruitment of the essential yeast ribosomal protein gene activator lfh1. Nature, 2004, 432, 1058-1061.	27.8	203
20	RAP1 protein activates and silences transcription of mating-type genes in yeast Genes and Development, 1991, 5, 616-628.	5.9	178
21	Nucleosome Stability Distinguishes Two Different Promoter Types at All Protein-Coding Genes in Yeast. Molecular Cell, 2015, 60, 422-434.	9.7	171
22	Silencing of genes at nontelomeric sites in yeast is controlled by sequestration of silencing factors at telomeres by Rap 1 protein Genes and Development, 1996, 10, 1297-1309.	5.9	161
23	Rif1 Controls DNA Replication Timing in Yeast through the PP1 Phosphatase Glc7. Cell Reports, 2014, 7, 62-69.	6.4	157
24	Sfp1 Interaction with TORC1 and Mrs6 Reveals Feedback Regulation on TOR Signaling. Molecular Cell, 2009, 33, 704-716.	9.7	144
25	How Telomerase Reaches Its End: Mechanism of Telomerase Regulation by the Telomeric Complex. Molecular Cell, 2008, 31, 153-165.	9.7	138
26	Yeast Ku protein plays a direct role in telomeric silencing and counteracts inhibition by Rif proteins. Current Biology, 1999, 9, 1123-S2.	3.9	135
27	Telomere length regulation: coupling DNA end processing to feedback regulation of telomerase. EMBO Journal, 2009, 28, 2309-2322.	7.8	125
28	A ribosome assembly stress response regulates transcription to maintain proteome homeostasis. ELife, 2019, 8, .	6.0	124
29	Pol12, the B subunit of DNA polymerase Â, functions in both telomere capping and length regulation. Genes and Development, 2004, 18, 992-1006.	5.9	123
30	A chemostat array enables the spatio-temporal analysis of the yeast proteome. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15842-15847.	7.1	123
31	Sequence-Directed Action of RSC Remodeler and General Regulatory Factors Modulates +1 Nucleosome Position to Facilitate Transcription. Molecular Cell, 2018, 71, 89-102.e5.	9.7	119
32	Increased association of telomerase with short telomeres in yeast. Genes and Development, 2007, 21, 1726-1730.	5.9	117
33	Delivery of Yeast Telomerase to a DNA Break Depends on the Recruitment Functions of Cdc13 and Est1. Molecular Cell, 2004, 16, 139-146.	9.7	116
34	Two distinct promoter architectures centered on dynamic nucleosomes control ribosomal protein gene transcription. Genes and Development, 2014, 28, 1695-1709.	5.9	109
35	A conserved motif within RAP1 has diversified roles in telomere protection and regulation in different organisms. Nature Structural and Molecular Biology, 2011, 18, 213-221.	8.2	100
36	Sds3 (Suppressor of Defective Silencing 3) Is an Integral Component of the Yeast Sin3·Rpd3 Histone Deacetylase Complex and Is Required for Histone Deacetylase Activity. Journal of Biological Chemistry, 2000, 275, 40961-40966.	3.4	99

#	Article	IF	CITATIONS
37	Massively parallel measurements of molecular interaction kinetics on a microfluidic platform. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16540-16545.	7.1	99
38	Multiple Interactions in Sir Protein Recruitment by Rap1p at Silencers and Telomeres in Yeast. Molecular and Cellular Biology, 2001, 21, 8082-8094.	2.3	96
39	Distinct roles for yeast Stn1 in telomere capping and telomerase inhibition. EMBO Journal, 2008, 27, 2328-2339.	7.8	94
40	Telomeric chromatin: replicating and wrapping up chromosome ends. Current Opinion in Genetics and Development, 2001, 11, 189-198.	3.3	93
41	Opposing chromatin remodelers control transcription initiation frequency and start site selection. Nature Structural and Molecular Biology, 2019, 26, 744-754.	8.2	93
42	Rif1 and Rif2 Shape Telomere Function and Architecture through Multivalent Rap1 Interactions. Cell, 2013, 153, 1340-1353.	28.9	92
43	Fine-Structure Analysis of Ribosomal Protein Gene Transcription. Molecular and Cellular Biology, 2006, 26, 4853-4862.	2.3	89
44	Early Replication of Short Telomeres in Budding Yeast. Cell, 2007, 128, 1051-1062.	28.9	84
45	DNA breaks are masked by multiple Rap1 binding in yeast: implications for telomere capping and telomerase regulation. Genes and Development, 2007, 21, 292-302.	5.9	81
46	Anticheckpoint pathways at telomeres in yeast. Nature Structural and Molecular Biology, 2012, 19, 307-313.	8.2	78
47	Spontaneous rDNA copy number variation modulates Sir2 levels and epigenetic gene silencing. Genes and Development, 2005, 19, 1199-1210.	5.9	75
48	The Sir2 protein family: A novel deacetylase for gene silencing and more. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 14030-14032.	7.1	73
49	Locus specificity determinants in the multifunctional yeast silencing protein Sir2. EMBO Journal, 2000, 19, 2641-2651.	7.8	71
50	Evidence That the Transcriptional Regulators <i>SIN3</i> and <i>RPD3</i> , and a Novel Gene (<i>SDS3</i>) with Similar Functions, Are Involved in Transcriptional Silencing in <i>S. cerevisiae</i> . Genetics, 1996, 144, 1343-1353.	2.9	71
51	Multimerization of Hsp42p, a Novel Heat Shock Protein of Saccharomyces cerevisiae, Is Dependent on a Conserved Carboxyl-terminal Sequence. Journal of Biological Chemistry, 1996, 271, 2717-2723.	3.4	69
52	Chromatin Fiber Invasion and Nucleosome Displacement by the Rap1 Transcription Factor. Molecular Cell, 2020, 77, 488-500.e9.	9.7	66
53	Telomerase and telomere-binding proteins: Controlling the endgame. Trends in Biochemical Sciences, 1997, 22, 233-235.	7.5	59
54	The Telomere-Binding Protein Tbf1 Demarcates snoRNA Gene Promoters in Saccharomyces cerevisiae. Molecular Cell, 2010, 38, 614-620.	9.7	58

#	Article	IF	CITATIONS
55	General Regulatory Factors Control the Fidelity of Transcription by Restricting Non-coding and Ectopic Initiation. Molecular Cell, 2018, 72, 955-969.e7.	9.7	52
56	Restoration of Silencing in <i>Saccharomyces cerevisiae</i> by Tethering of a Novel Sir2-Interacting Protein, Esc8. Genetics, 2002, 162, 633-645.	2.9	52
57	Rif1 maintains telomeres and mediates DNA repair by encasing DNA ends. Nature Structural and Molecular Biology, 2017, 24, 588-595.	8.2	51
58	Distinct patterns of histone acetyltransferase and Mediator deployment at yeast protein-coding genes. Genes and Development, 2018, 32, 1252-1265.	5.9	49
59	A Molecular Titration System Coordinates Ribosomal Protein Gene Transcription with Ribosomal RNA Synthesis. Molecular Cell, 2016, 64, 720-733.	9.7	47
60	CELL BIOLOGY:Enhanced: TelomeresUnsticky Ends. , 1998, 281, 1818-1819.		46
61	Sfp1 regulates transcriptional networks driving cell growth and division through multiple promoter-binding modes. Genes and Development, 2019, 33, 288-293.	5.9	44
62	Gcn5 and Sirtuins Regulate Acetylation of the Ribosomal Protein Transcription Factor Ifh1. Current Biology, 2013, 23, 1638-1648.	3.9	43
63	Rif1 Binding and Control of Chromosome-Internal DNA Replication Origins Is Limited by Telomere Sequestration. Cell Reports, 2018, 23, 983-992.	6.4	39
64	Transcriptional control of ribosome biogenesis in yeast: links to growth and stress signals. Biochemical Society Transactions, 2021, 49, 1589-1599.	3.4	39
65	Telomere Formation by Rap1p Binding Site Arrays Reveals End-Specific Length Regulation Requirements and Active Telomeric Recombination. Molecular and Cellular Biology, 2001, 21, 8117-8128.	2.3	38
66	Rif1: A Conserved Regulator of DNA Replication and Repair Hijacked by Telomeres in Yeasts. Frontiers in Genetics, 2016, 7, 45.	2.3	38
67	Arsenic Toxicity to <i>Saccharomyces cerevisiae</i> Is a Consequence of Inhibition of the TORC1 Kinase Combined with a Chronic Stress Response. Molecular Biology of the Cell, 2009, 20, 1048-1057.	2.1	34
68	Rif1 S-acylation mediates DNA double-strand break repair at the inner nuclear membrane. Nature Communications, 2019, 10, 2535.	12.8	34
69	Rap1P and Telomere Length Regulation in Yeast. Novartis Foundation Symposium, 1997, 211, 76-103.	1.1	30
70	Budding Yeast Rif1 Controls Genome Integrity by Inhibiting rDNA Replication. PLoS Genetics, 2016, 12, e1006414.	3.5	30
71	Regulation of telomere addition at DNA double-strand breaks. Chromosoma, 2013, 122, 159-173.	2.2	29
72	DNA-end capping by the budding yeast transcription factor and subtelomeric binding protein Tbf1. EMBO Journal, 2012, 31, 138-149.	7.8	28

#	Article	IF	CITATIONS
73	Fork pausing complex engages topoisomerases at the replisome. Genes and Development, 2020, 34, 87-98.	5.9	28
74	Mechanisms coordinating ribosomal protein gene transcription in response to stress. Nucleic Acids Research, 2020, 48, 11408-11420.	14.5	27
75	Exploring Quantitative Yeast Phenomics with Single-Cell Analysis of DNA Damage Foci. Cell Systems, 2016, 3, 264-277.e10.	6.2	26
76	Establishing nucleosome architecture and stability at promoters: Roles of pioneer transcription factors and the RSC chromatin remodeler. BioEssays, 2017, 39, 1600237.	2.5	26
77	A Reply to "MNase-Sensitive Complexes in Yeast: Nucleosomes and Non-histone Barriers,―by Chereji etÂal Molecular Cell, 2017, 65, 578-580.	9.7	18
78	In Vivo Topography of Rap1p–DNA Complex at Saccharomyces cerevisiae TEF2 UASRPG During Transcriptional Regulation. Journal of Molecular Biology, 2002, 318, 333-349.	4.2	16
79	Different means to common ends. Nature, 1997, 385, 676-677.	27.8	15
80	The SUMO E3 Ligase Siz2 Exerts a Locus-Dependent Effect on Gene Silencing in Saccharomyces cerevisiae. Eukaryotic Cell, 2012, 11, 452-462.	3.4	14
81	Distinct DNA Elements Contribute to Rap1p Affinity for its Binding Sites. Journal of Molecular Biology, 2004, 338, 877-893.	4.2	12
82	Cellular senescence: Lessons from yeast for human aging?. Current Biology, 1998, 8, R192-R195.	3.9	11
83	Approaching Protein Barriers: Emerging Mechanisms of Replication Pausing in Eukaryotes. Frontiers in Cell and Developmental Biology, 2021, 9, 672510.	3.7	11
84	Transcriptional silencing: Replication redux. Current Biology, 2001, 11, R816-R819.	3.9	10
85	ChECing out Rif1 action in freely cycling cells. Current Genetics, 2019, 65, 429-434.	1.7	6
86	The KEOPS Complex: A Rosetta Stone for Telomere Regulation?. Cell, 2006, 124, 1125-1128.	28.9	5
87	Refined View of the Ends. Science, 2008, 320, 1301-1302.	12.6	5
88	TFIID or not TFIID , a continuing transcriptional SAGA. EMBO Journal, 2017, 36, 248-249.	7.8	4
89	Aging: Silence is golden. Current Biology, 1995, 5, 822-825.	3.9	3
90	The means to bind the ends. Nature Structural and Molecular Biology, 1996, 3, 491-493.	8.2	2

#	Article	IF	CITATIONS
91	Pitfalls in using phenanthroline to study the causal relationship between promoter nucleosome acetylation and transcription. Nature Communications, 2022, 13, .	12.8	1
92	Global control of DNA replication timing by the budding yeast telomere protein Rif1. Epigenetics and Chromatin, 2013, 6, .	3.9	0
93	DNA structure Telomeres: Maintenance and Replication. , 2021, , 35-42.		Ο