Pathum Weerawarna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7113447/publications.pdf

Version: 2024-02-01

933264 940416 16 448 10 16 citations h-index g-index papers 16 16 16 598 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Theoretical and Mechanistic Validation of Global Kinetic Parameters of the Inactivation of GABA Aminotransferase by OV329 and CPP-115. ACS Chemical Biology, 2021, 16, 615-630.	1.6	6
2	Remarkable and Unexpected Mechanism for $(\langle i \rangle S < i \rangle)$ -3-Amino-4-(difluoromethylenyl)cyclohex-1-ene-1-carboxylic Acid as a Selective Inactivator of Human Ornithine Aminotransferase. Journal of the American Chemical Society, 2021, 143, 8193-8207.	6.6	7
3	A Remarkable Difference That One Fluorine Atom Confers on the Mechanisms of Inactivation of Human Ornithine Aminotransferase by Two Cyclohexene Analogues of Î ³ -Aminobutyric Acid. Journal of the American Chemical Society, 2020, 142, 4892-4903.	6.6	20
4	Mechanism-Based Design of 3-Amino-4-Halocyclopentenecarboxylic Acids as Inactivators of GABA Aminotransferase. ACS Medicinal Chemistry Letters, 2020, 11, 1949-1955.	1.3	6
5	Putative structural rearrangements associated with the interaction of macrocyclic inhibitors with norovirus 3CL protease. Proteins: Structure, Function and Bioinformatics, 2019, 87, 579-587.	1.5	7
6	Design and Mechanism of ($\langle i\rangle S\langle i\rangle$)-3-Amino-4-(difluoromethylenyl)cyclopent-1-ene-1-carboxylic Acid, a Highly Potent \hat{I}^3 -Aminobutyric Acid Aminotransferase Inactivator for the Treatment of Addiction. Journal of the American Chemical Society, 2018, 140, 2151-2164.	6.6	53
7	Structure-based exploration and exploitation of the S4 subsite of norovirus 3CL protease in the design of potent and permeable inhibitors. European Journal of Medicinal Chemistry, 2017, 126, 502-516.	2.6	20
8	Structure-based design and synthesis of triazole-based macrocyclic inhibitors of norovirus protease: Structural, biochemical, spectroscopic, and antiviral studies. European Journal of Medicinal Chemistry, 2016, 119, 300-318.	2.6	30
9	Potent inhibition of enterovirus D68 and human rhinoviruses by dipeptidyl aldehydes and α-ketoamides. Antiviral Research, 2016, 125, 84-91.	1.9	25
10	Anti-norovirus therapeutics: a patent review (2010-2015). Expert Opinion on Therapeutic Patents, 2016, 26, 297-308.	2.4	9
11	Oxadiazole-Based Cell Permeable Macrocyclic Transition State Inhibitors of Norovirus 3CL Protease. Journal of Medicinal Chemistry, 2016, 59, 1899-1913.	2.9	24
12	Structure-Guided Design and Optimization of Dipeptidyl Inhibitors of Norovirus 3CL Protease. Structure–Activity Relationships and Biochemical, X-ray Crystallographic, Cell-Based, and In Vivo Studies. Journal of Medicinal Chemistry, 2015, 58, 3144-3155.	2.9	51
13	Antifungal drug discovery: the process and outcomes. Future Microbiology, 2014, 9, 791-805.	1.0	92
14	Macrocyclic inhibitors of 3C and 3C-like proteases of picornavirus, norovirus, and coronavirus. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 3709-3712.	1.0	40
15	Potent inhibition of norovirus 3CL protease by peptidyl α-ketoamides and α-ketoheterocycles. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 4820-4826.	1.0	54
16	In Vitro Antibacterial Activity of 4-Phenyl-1-(2-phenyl-allyl)pyridinium bromide: A Novel Class of Pyridinium Based Antibacterial Compounds. Indian Journal of Microbiology, 2012, 52, 83-87.	1.5	4