
Davide Malagoli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7112866/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dermal Alterations in Clinically Unaffected Skin of Pseudoxanthoma elasticum Patients. Journal of Clinical Medicine, 2021, 10, 500.	1.0	4
2	A New Protocol of Computer-Assisted Image Analysis Highlights the Presence of Hemocytes in the Regenerating Cephalic Tentacles of Adult Pomacea canaliculata. International Journal of Molecular Sciences, 2021, 22, 5023.	1.8	4
3	Pomacea canaliculata Ampullar Proteome: A Nematode-Based Bio-Pesticide Induces Changes in Metabolic and Stress-Related Pathways. Biology, 2021, 10, 1049.	1.3	7
4	The Immune Response of the Invasive Golden Apple Snail to a Nematode-Based Molluscicide Involves Different Organs. Biology, 2020, 9, 371.	1.3	10
5	The mineralization process of insoluble elastin fibrillar structures: Ionic environment vs degradation. International Journal of Biological Macromolecules, 2020, 149, 693-706.	3.6	24
6	Relationship Between Mitochondrial Structure and Bioenergetics in Pseudoxanthoma elasticum Dermal Fibroblasts. Frontiers in Cell and Developmental Biology, 2020, 8, 610266.	1.8	12
7	Toward the Molecular Deciphering of <i>Pomacea canaliculata</i> Immunity: First Proteomic Analysis of Circulating Hemocytes. Proteomics, 2019, 19, e1800314.	1.3	20
8	Circulating phagocytes: the ancient and conserved interface between immune and neuroendocrine function. Biological Reviews, 2017, 92, 369-377.	4.7	31
9	A prokineticin-like protein responds to immune challenges in the gastropod pest Pomacea canaliculata. Developmental and Comparative Immunology, 2017, 72, 37-43.	1.0	16
10	Cross-talk among immune and neuroendocrine systems in molluscs and other invertebrate models. Hormones and Behavior, 2017, 88, 41-44.	1.0	17
11	Hematopoiesis and Hemocytes in Pancrustacean and Molluscan Models. , 2016, , 1-28.		5
12	Cell Death Pathways in an Unconventional Invertebrate Model. , 2016, , 17-27.		0
13	Molluscs as Models for Translational Medicine. Medical Science Monitor Basic Research, 2015, 21, 96-99.	2.6	22
14	Thymic Maturation and Programmed Cell Death. , 2014, , 105-124.		3
15	Effects of repeated hemolymph withdrawals on the hemocyte populations and hematopoiesis in Pomacea canaliculata. Fish and Shellfish Immunology, 2014, 38, 56-64.	1.6	24
16	Mouse Models as Paradigms of Human Diseases. , 2014, , 163-177.		0
17	Epigenetic modification in neurons of the mollusc Pomacea canaliculata after immune challenge. Brain Research, 2013, 1537, 18-26.	1.1	30
18	Neuropeptide S stimulates human monocyte chemotaxis via NPS receptor activation. Peptides, 2013, 39, 16-20.	1.2	19

Davide Malagoli

#	Article	IF	CITATIONS
19	Comparative analysis of circulating hemocytes of the freshwater snail Pomacea canaliculata. Fish and Shellfish Immunology, 2013, 34, 1260-1268.	1.6	38
20	Skin wound healing in different aged <i>Xenopus laevis</i> . Journal of Morphology, 2013, 274, 956-964.	0.6	58
21	The main actors involved in parasitization of Heliothis virescens larva. Cell and Tissue Research, 2012, 350, 491-502.	1.5	13
22	Drosophila Helical factor is an inducible protein acting as an immune-regulated cytokine in S2 cells. Cytokine, 2012, 58, 280-286.	1.4	4
23	Molecular responses to stress conditions in invertebrate and vertebrate animal models. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2012, 163, S40-S41.	0.8	1
24	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
25	Methoxyfenozide and pyriproxifen alter the cellular immune reactions of Eurygaster integriceps Puton (Hemiptera: Scutelleridae) against Beauveria bassiana. Pesticide Biochemistry and Physiology, 2012, 102, 30-37.	1.6	21
26	TP53 codon 72 polymorphism affects accumulation of mtDNA damage in human cells. Aging, 2012, 4, 28-39.	1.4	23
27	Purification and characterization of phenoloxidase from the hemocytes of Eurygaster integriceps (Hemiptera: Scutelleridae). Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2011, 158, 117-123.	0.7	29
28	The evolution of pro-opiomelanocortin: Looking for the invertebrate fingerprints. Peptides, 2011, 32, 2137-2140.	1.2	9
29	The evolution of the adipose tissue: A neglected enigma. General and Comparative Endocrinology, 2011, 174, 1-4.	0.8	68
30	Inflammatory Response in Molluscs: Cross-Taxa and Evolutionary Considerations. Current Pharmaceutical Design, 2010, 16, 4160-4165.	0.9	20
31	Targets and Effects of Yessotoxin, Okadaic Acid and Palytoxin: A Differential Review. Marine Drugs, 2010, 8, 658-677.	2.2	46
32	Life is a huge compromise: Is the complexity of the vertebrate immune-neuroendocrine system an advantage or the price to pay?. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2010, 155, 134-138.	0.8	9
33	Discrepant effects of mammalian factors on molluscan cell motility, chemotaxis and phagocytosis: divergent evolution or finely tuned contingency?. Cell Biology International, 2010, 34, 1091-1094.	1.4	4
34	Autophagy and its physiological relevance in arthropods: Current knowledge and perspectives. Autophagy, 2010, 6, 575-588.	4.3	77
35	New insights into autophagic cell death in the gypsy moth Lymantria dispar: a proteomic approach. Cell and Tissue Research, 2009, 336, 107-118.	1.5	9
36	Temperature and Ca ²⁺ ion as modulators in cellular immunity of the Sunn pest <i>Eurygaster integriceps</i> Puton (Heteroptera: Scutelleridae). Entomological Research, 2009, 39, 364-371.	0.6	17

DAVIDE MALAGOLI

#	Article	IF	CITATIONS
37	Expression of the genes siamois, engrailed-2, bmp4 and myf5 during Xenopus development in presence of the marine toxins okadaic acid and palytoxin. Chemosphere, 2009, 77, 308-312.	4.2	13
38	Oligomycin A and the IPLB‣dFB insect cell line: Actin and mitochondrial responses. Cell Biology International, 2008, 32, 287-292.	1.4	10
39	Ecoimmunology: is there any room for the neuroendocrine system?. BioEssays, 2008, 30, 868-874.	1.2	35
40	Effects of the marine toxins okadaic acid and palytoxin on mussel phagocytosis. Fish and Shellfish Immunology, 2008, 24, 180-186.	1.6	40
41	unpaired (upd)-3 expression and other immune-related functions are stimulated by interleukin-8 in Drosophila melanogaster SL2 cell line. Cytokine, 2008, 44, 269-274.	1.4	10
42	Chapter Thirtyâ€Eight In Vitro Methods to Monitor Autophagy in Lepidoptera. Methods in Enzymology, 2008, 451, 685-709.	0.4	9
43	Cell Death in the IPLB-LdFB Insect Cell Line: Facts and Implications. Current Pharmaceutical Design, 2008, 14, 126-130.	0.9	10
44	Presence of and stress-related changes in urocortin-like molecules in neurons and immune cells from the mussel Mytilus galloprovincialis. Peptides, 2007, 28, 1545-1552.	1.2	4
45	A putative helical cytokine functioning in innate immune signalling in Drosophila melanogaster. Biochimica Et Biophysica Acta - General Subjects, 2007, 1770, 974-978.	1.1	14
46	Stress and immune response in the mussel Mytilus galloprovincialis. Fish and Shellfish Immunology, 2007, 23, 171-177.	1.6	90
47	Common evolutionary origin of the immune and neuroendocrine systems: from morphological and functional evidence to in silico approaches. Trends in Immunology, 2007, 28, 497-502.	2.9	73
48	Evaluation of the effects of the marine toxin okadaic acid by using FETAX assay. Toxicology Letters, 2007, 169, 145-151.	0.4	18
49	Helical Cytokines and Invertebrate Immunity: A New Field of Research. Scandinavian Journal of Immunology, 2007, 66, 484-485.	1.3	6
50	Lysosomes as the target of yessotoxin in invertebrate and vertebrate cell lines. Toxicology Letters, 2006, 167, 75-83.	0.4	45
51	Oligomycin A induces autophagy in the IPLB-LdFB insect cell line. Cell and Tissue Research, 2006, 326, 179-186.	1.5	30
52	Algal toxin yessotoxin signalling pathways involve immunocyte mussel calcium channels. Cell Biology International, 2006, 30, 721-726.	1.4	20
53	50 Hz magnetic fields of constant or fluctuating intensity: Effects on immunocytehsp70 in the musselMytilus galloprovincialis. Bioelectromagnetics, 2006, 27, 427-429.	0.9	5
54	Cytokines and Invertebrates: TGF-β and PDGF. Current Pharmaceutical Design, 2006, 12, 3025-3031.	0.9	14

DAVIDE MALAGOLI

#	Article	IF	CITATIONS
55	Growth Factors and Chemokines: A Comparative Functional Approach Between Invertebrates and Vertebrates. Current Medicinal Chemistry, 2006, 13, 2737-2750.	1.2	39
56	Investigation of the loss of byssus in Mytilus galloprovincialis from mussel farms in the Adriatic Sea. Cell Biology International, 2005, 29, 857-860.	1.4	3
57	Cell-death mechanisms in the IPLB-LdFB insect cell line: a nuclear located Bcl-2-like molecule as a possible controller of 2-deoxy-D-ribose-mediated DNA fragmentation. Cell and Tissue Research, 2005, 320, 337-343.	1.5	12
58	Cytotoxicity as a marker of mussel health status. Journal of the Marine Biological Association of the United Kingdom, 2005, 85, 359-362.	0.4	13
59	THE EFFECTS OF PARASITE-DERIVED IMMUNE-SUPPRESSIVE FACTORS ON THE CELLULAR INNATE IMMUNE AND AUTOIMMUNE RESPONSES OF DROSOPHILA MELANOGASTER*. Journal of Parasitology, 2004, 90, 1139-1149.	0.3	19
60	Yessotoxin affects fMLP-induced cell shape changes inMytilus galloprovincialis immunocytes. Cell Biology International, 2004, 28, 57-61.	1.4	27
61	50 Hz magnetic fields activate mussel immunocyte p38 MAP kinase and induce HSP70 and 90. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2004, 137, 75-79.	1.3	28
62	ProCRH in the teleost Ameiurus nebulosus: gene cloning and role in LPS-induced stress response. Brain, Behavior, and Immunity, 2004, 18, 451-457.	2.0	12
63	Effects of 50 Hz magnetic fields on fMLP-induced shape changes in invertebrate immunocytes: The role of calcium ion channels. Bioelectromagnetics, 2003, 24, 277-282.	0.9	21
64	Effects of 50-Hz magnetic fields on the signalling pathways of fMLP-induced shape changes in invertebrate immunocytes: the activation of an alternative "stress pathway― Biochimica Et Biophysica Acta - General Subjects, 2003, 1620, 185-190.	1.1	24
65	Cloning and characterisation of a procorticotrophin-releasing hormone in the IZD-MB-0503 immunocyte line from the insect Mamestra brassicae. Peptides, 2002, 23, 1829-1836.	1.2	7
66	50 Hz magnetic fields of varying flux intensity affect cell shape changes in invertebrate immunocytes: The role of potassium ion channels. Bioelectromagnetics, 2002, 23, 292-297.	0.9	14
67	BCL-2 DOES NOT CONTROL PROGRAMMED CELL DEATH IN THE IPLB-LdFB CELL LINE FROM THE INSECT LYMANTRIA DISPAR. Cell Biology International, 2002, 26, 563-566.	1.4	0
68	Protein kinases mediate nitric oxide-induced apoptosis in the insect cell line IPLB-LdFB. Cellular and Molecular Life Sciences, 2002, 59, 894-901.	2.4	8
69	Nitric oxide induces apoptosis in the fat body cell line IPLB-LdFB from the insect Lymantria dispar. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2001, 128, 247-254.	0.7	8
70	An anti-Bcl-2 antibody prevents 2-deoxy-D-ribose-induced apoptosis in the IPLB-LdFB insect cell line. Cellular and Molecular Life Sciences, 2001, 58, 653-659.	2.4	6
71	INVOLVEMENT OF PI 3-KINASE, PKA AND PKC IN PDGF- AND TGF-Î ² -MEDIATED PREVENTION OF 2-DEOXY-D-RIBOSE-INDUCED APOPTOSIS IN THE INSECT CELL LINE, IPLB-LdFB. Cell Biology International, 2001, 25, 171-177.	1.4	17
72	Immunomodulation by recombinant human interleukin-8 and its signal transduction pathways in invertebrate hemocytes. Cellular and Molecular Life Sciences, 2000, 57, 506-513.	2.4	49

#	Article	IF	CITATIONS
73	Synergistic role of cAMP and IP3 in corticotropin-releasing hormone-induced cell shape changes in invertebrate immunocytes. Peptides, 2000, 21, 175-182.	1.2	40
74	Platelet-derived growth factor and transforming growth factor-Î ² induce shape changes in invertebrate immunocytes via multiple signalling pathways and provoke the expression of Fos-, Jun- and SMAD-family members. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1999, 122, 389-395.	0.7	12