
Bradley J Blitvich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7112732/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Insect-Specific Flaviviruses: A Systematic Review of Their Discovery, Host Range, Mode of Transmission, Superinfection Exclusion Potential and Genomic Organization. Viruses, 2015, 7, 1927-1959.	1.5	260
2	A New Insect-Specific Flavivirus from Northern Australia Suppresses Replication of West Nile Virus and Murray Valley Encephalitis Virus in Co-infected Mosquito Cells. PLoS ONE, 2013, 8, e56534.	1.1	183
3	NS1′ of Flaviviruses in the Japanese Encephalitis Virus Serogroup Is a Product of Ribosomal Frameshifting and Plays a Role in Viral Neuroinvasiveness. Journal of Virology, 2010, 84, 1641-1647.	1.5	150
4	Epitope-Blocking Enzyme-Linked Immunosorbent Assays for the Detection of Serum Antibodies to West Nile Virus in Multiple Avian Species. Journal of Clinical Microbiology, 2003, 41, 1041-1047.	1.8	133
5	Transmission dynamics and changing epidemiology of West Nile virus. Animal Health Research Reviews, 2008, 9, 71-86.	1.4	120
6	West Nile Virus Transmission in Resident Birds, Dominican Republic. Emerging Infectious Diseases, 2003, 9, 1299-1302.	2.0	114
7	Detection of RNA from a Novel West Nile-like Virus and High Prevalence of an Insect-specific Flavivirus in Mosquitoes in the Yucatan Peninsula of Mexico. American Journal of Tropical Medicine and Hygiene, 2009, 80, 85-95.	0.6	112
8	Serologic Evidence of West Nile Virus Infection in Horses, Coahuila State, Mexico. Emerging Infectious Diseases, 2003, 9, 853-856.	2.0	107
9	Epitope-Blocking Enzyme-Linked Immunosorbent Assays for Detection of West Nile Virus Antibodies in Domestic Mammals. Journal of Clinical Microbiology, 2003, 41, 2676-2679.	1.8	95
10	Evidence of Efficient Transovarial Transmission of Culex Flavivirus by <i>Culex pipiens</i> (Diptera:) Tj ETQq0 0 0 r	gBT /Over 0.9	lock 10 Tf 50
11	Persistence of Antibodies to West Nile Virus in Naturally Infected Rock Pigeons (Columba livia). Vaccine Journal, 2005, 12, 665-667.	3.2	88
12	Detection of RNA from a novel West Nile-like virus and high prevalence of an insect-specific flavivirus in mosquitoes in the Yucatan Peninsula of Mexico. American Journal of Tropical Medicine and Hygiene, 2009, 80, 85-95.	0.6	80
13	Restriction of Zika virus infection and transmission in <i>Aedes aegypti</i> mediated by an insect-specific flavivirus. Emerging Microbes and Infections, 2018, 7, 1-13.	3.0	73

14	Serologic Evidence of West Nile Virus Infection in Horses, Yucatan State, Mexico. Emerging Infectious Diseases, 2003, 9, 857-859.	2.0	70
15	West Nile Virus Viremia in Eastern Chipmunks (Tamias striatus) Sufficient for Infecting Different Mosquitoes. Emerging Infectious Diseases, 2007, 13, 831-837.	2.0	61
16	Genomic Sequence and Phylogenetic Analysis of Culex Flavivirus, an Insect-Specific Flavivirus, Isolated From <i>Culex pipiens</i> (Diptera: Culicidae) in Iowa. Journal of Medical Entomology, 2009, 46, 934-941.	0.9	61

17	A Review of Flaviviruses that Have No Known Arthropod Vector. Viruses, 2017, 9, 154.	1.5	60
18	Evidence for ribosomal frameshifting and a novel overlapping gene in the genomes of insect-specific flaviviruses. Virology, 2010, 399, 153-166.	1.1	59

#	Article	IF	CITATIONS
19	West Nile Virus Isolation in Human and Mosquitoes, Mexico. Emerging Infectious Diseases, 2005, 11, 1449-1452.	2.0	58
20	Detection of Flaviviruses and Orthobunyaviruses in Mosquitoes in the Yucatan Peninsula of Mexico in 2008. Vector-Borne and Zoonotic Diseases, 2010, 10, 777-783.	0.6	54
21	ANTIBODIES TO WEST NILE VIRUS IN ASYMPTOMATIC MAMMALS, BIRDS, AND REPTILES IN THE YUCATAN PENINSULA OF MEXICO. American Journal of Tropical Medicine and Hygiene, 2006, 74, 908-914.	0.6	52
22	Longitudinal Studies of West Nile Virus Infection in Avians, Yucatán State, México. Vector-Borne and Zoonotic Diseases, 2004, 4, 3-14.	0.6	44
23	West Nile Virus in Horses, Guatemala. Emerging Infectious Diseases, 2006, 12, 1038-1039.	2.0	36
24	Serologic Evidence of West Nile Virus Infection in Birds, Tamaulipas State, México. Vector-Borne and Zoonotic Diseases, 2003, 3, 209-213.	0.6	35
25	Identification and analysis of truncated and elongated species of the flavivirus NS1 protein. Virus Research, 1999, 60, 67-79.	1.1	31
26	Serological Evidence of Flaviviruses and Alphaviruses in Livestock and Wildlife in Trinidad. Vector-Borne and Zoonotic Diseases, 2012, 12, 969-978.	0.6	31
27	Merida virus, a putative novel rhabdovirus discovered in Culex and Ochlerotatus spp. mosquitoes in the Yucatan Peninsula of Mexico. Journal of General Virology, 2016, 97, 977-987.	1.3	29
28	Isolation and sequence analysis of Culex flavivirus from Culex interrogator and Culex quinquefasciatus in the Yucatan Peninsula of Mexico. Archives of Virology, 2010, 155, 983-986.	0.9	28
29	Phylogenetic analysis of West Nile virus, Nuevo Leon State, Mexico. Emerging Infectious Diseases, 2004, 10, 1314-7.	2.0	28
30	Detection of novel and recognized RNA viruses in mosquitoes from the Yucatan Peninsula of Mexico using metagenomics and characterization of their in vitro host ranges. Journal of General Virology, 2018, 99, 1729-1738.	1.3	27
31	Identification and Sequence Determination of mRNAs Detected in Dormant (Diapausing) Aedes triseriatus Mosquito Embryos. DNA Sequence, 2001, 12, 197-202.	0.7	26
32	Serologic Surveillance for West Nile Virus and Other Flaviviruses in Febrile Patients, Encephalitic Patients, and Asymptomatic Blood Donors in Northern Mexico. Vector-Borne and Zoonotic Diseases, 2010, 10, 151-157.	0.6	24
33	Chikungunya Virus in Febrile Humans andAedes aegyptiMosquitoes, Yucatan, Mexico. Emerging Infectious Diseases, 2016, 22, 1804-1807.	2.0	22
34	Sexual Transmission of Arboviruses: A Systematic Review. Viruses, 2020, 12, 933.	1.5	21
35	Bunyavirus Taxonomy: Limitations and Misconceptions Associated with the Current ICTV Criteria Used for Species Demarcation. American Journal of Tropical Medicine and Hygiene, 2018, 99, 11-16.	0.6	21
36	Orthobunyaviruses, a Common Cause of Infection of Livestock in the Yucatan Peninsula of Mexico. American Journal of Tropical Medicine and Hygiene, 2012, 87, 1132-1139.	0.6	19

#	Article	IF	CITATIONS
37	Antibodies to West Nile Virus in Wild and Farmed Crocodiles in Southeastern Mexico. Journal of Wildlife Diseases, 2013, 49, 690-693.	0.3	19
38	Maternal, Fetal, and Neonatal Outcomes in Pregnant Dengue Patients in Mexico. BioMed Research International, 2018, 2018, 1-8.	0.9	19
39	Antibodies to West Nile Virus in Raccoons and Other Wild Peridomestic Mammals in Iowa. Journal of Wildlife Diseases, 2009, 45, 1163-1168.	0.3	18
40	Management Factors Associated with Operation-Level Prevalence of Antibodies to Cache Valley Virus and Other Bunyamwera Serogroup Viruses in Sheep in the United States. Vector-Borne and Zoonotic Diseases, 2015, 15, 683-693.	0.6	18
41	Detection of Antibodies to West Nile Virus in Horses, Costa Rica, 2004. Vector-Borne and Zoonotic Diseases, 2011, 11, 1081-1084.	0.6	17
42	Molecular detection of Dirofilaria immitis in dogs and mosquitoes in Tabasco, Mexico. Journal of Vector Borne Diseases, 2018, 55, 151.	0.1	16
43	Arrival and Establishment ofAedes japonicus japonicus(Diptera: Culicidae) in Iowa. Journal of Medical Entomology, 2009, 46, 1282-1289.	0.9	15
44	Detection of antibodies to West Nile and Saint Louis encephalitis viruses in horses. Salud Publica De Mexico, 2004, 46, 373-5.	0.1	15
45	Sequence and phylogenetic data indicate that an orthobunyavirus recently detected in the Yucatan Peninsula of Mexico is a novel reassortant of Potosi and Cache Valley viruses. Archives of Virology, 2012, 157, 1199-1204.	0.9	14
46	Culex tarsalis is a competent vector species for Cache Valley virus. Parasites and Vectors, 2018, 11, 519.	1.0	14
47	Orthobunyavirus Antibodies in Humans, Yucatan Peninsula, Mexico. Emerging Infectious Diseases, 2012, 18, 1629-32.	2.0	13
48	Serologic Evidence of Flavivirus Infections in Peridomestic Rodents in Merida, Mexico. Journal of Wildlife Diseases, 2016, 52, 168-172.	0.3	13
49	Infection and transmission of Cache Valley virus by Aedes albopictus and Aedes aegypti mosquitoes. Parasites and Vectors, 2019, 12, 384.	1.0	13
50	Discovery of a novel Tymoviridae-like virus in mosquitoes from Mexico. Archives of Virology, 2019, 164, 649-652.	0.9	13
51	Substitution of the premembrane and envelope protein genes of Modoc virus with the homologous sequences of West Nile virus generates a chimeric virus that replicates in vertebrate but not mosquito cells. Virology Journal, 2014, 11, 150.	1.4	12
52	Arbovirus Surveillance near the Mexico–U.S. Border: Isolation and Sequence Analysis of Chikungunya Virus from Patients with Dengue-like Symptoms in Reynosa, Tamaulipas. American Journal of Tropical Medicine and Hygiene, 2018, 99, 191-194.	0.6	11
53	Nucleotide sequencing and serologic analysis of Cache Valley virus isolates from the Yucatan Peninsula of Mexico. Virus Genes, 2012, 45, 176-180.	0.7	10
54	Monitoring sheep and Culicoides midges in Montana for evidence of Bunyamwera serogroup virus infection. Veterinary Record Open, 2013, 1, e000071.	0.3	9

#	Article	IF	CITATIONS
55	Evidence for West Nile Virus Spillover into the Squirrel Population in Atlanta, Georgia. Vector-Borne and Zoonotic Diseases, 2015, 15, 303-310.	0.6	9
56	Characterization of newly revealed sequences in the infectious myonecrosis virus genome in Litopenaeus vannamei. Journal of General Virology, 2015, 96, 1821-1829.	1.3	9
57	Hematologic RIs for healthy water buffaloes (<i>Bubalus bubalis</i>) in southern Mexico. Veterinary Clinical Pathology, 2017, 46, 436-441.	0.3	9
58	Biology and Transmission Dynamics of Aedes flavivirus. Journal of Medical Entomology, 2022, 59, 659-666.	0.9	9
59	Chimeric Zika viruses containing structural protein genes of insect-specific flaviviruses cannot replicate in vertebrate cells due to entry and post-translational restrictions. Virology, 2021, 559, 30-39.	1.1	8
60	Skunk River virus, a novel orbivirus isolated from Aedes trivittatus in the United States. Journal of General Virology, 2019, 100, 295-300.	1.3	8
61	Surveillance for Flaviviruses Near the Mexico–U.S. Border: Co-circulation of Dengue Virus Serotypes 1, 2, and 3 and West Nile Virus in Tamaulipas, Northern Mexico, 2014–2016. American Journal of Tropical Medicine and Hygiene, 2018, 99, 1308-1317.	0.6	8
62	Infection, dissemination, and transmission efficiencies of Zika virus in Aedes aegypti after serial passage in mosquito or mammalian cell lines or alternating passage in both cell types. Parasites and Vectors, 2021, 14, 261.	1.0	7
63	Identification of a novel subtype of South River virus (family Bunyaviridae). Archives of Virology, 2012, 157, 1205-1209.	0.9	6
64	Entomological and virological surveillance for dengue virus in churches in Merida, Mexico. Revista Do Instituto De Medicina Tropical De Sao Paulo, 2019, 61, e9.	0.5	6
65	Complete nucleotide sequences of the small and medium RNA genome segments of Kairi virus (family) Tj ETQq1	L 0.78431	4 ggBT /Over
66	Detection of hand, foot and mouth disease in the Yucatan Peninsula of Mexico. Gastroenterology Insights, 2014, 6, 5627.	0.7	5
67	Complete genome sequences of two insect-specific flaviviruses. Archives of Virology, 2017, 162, 3913-3917.	0.9	5
68	Evidence that Lokern virus (family Peribunyaviridae) is a reassortant that acquired its small and large genome segments from Main Drain virus and its medium genome segment from an undiscovered virus. Virology Journal, 2018, 15, 122.	1.4	5
69	Co-Circulation of All Four Dengue Viruses and Zika Virus in Guerrero, Mexico, 2019. Vector-Borne and Zoonotic Diseases, 2021, 21, 458-465.	0.6	5
70	Chikungunya in Guerrero, Mexico, 2019 and Evidence of Gross Underreporting in the Region. American Journal of Tropical Medicine and Hygiene, 2021, 105, 1281-1284.	0.6	5
71	Complete cDNA and Deduced Amino Acid Sequence of the Chaperonin Containing T-Complex Polypeptide 1 (CCT) Delta Subunit from Aedes triseriatus Mosquitoes. DNA Sequence, 2001, 12, 203-208.	0.7	4
72	West Nile Virus Infection in Human and Mouse Cornea Tissue. American Journal of Tropical Medicine and Hygiene, 2016, 95, 1185-1191.	0.6	4

#	Article	IF	CITATIONS
73	Complete Genome Sequence of Houston Virus, a Newly Discovered Mosquito-Specific Virus Isolated from Culex quinquefasciatus in Mexico. Microbiology Resource Announcements, 2018, 7, .	0.3	4
74	Evidence of Coinfections between SARS-CoV-2 and Select Arboviruses in Guerrero, Mexico, 2020–2021. American Journal of Tropical Medicine and Hygiene, 2022, , .	0.6	4
75	Arboviruses: Molecular Biology, Evolution and Control. Nikos Vasilakis and Duane J. Gubler. American Journal of Tropical Medicine and Hygiene, 2016, 95, 488-489.	0.6	3
76	Complete genome sequence of T'Ho virus, a novel putative flavivirus from the Yucatan Peninsula of Mexico. Virology Journal, 2017, 14, 110.	1.4	3
77	The host range restriction of bat-associated no-known-vector flaviviruses occurs post-entry. Journal of General Virology, 2021, 102, .	1.3	3
78	Detection of Antibodies to Lokern, Main Drain, St. Louis Encephalitis, and West Nile Viruses in Vertebrate Animals in Chihuahua, Guerrero, and Michoacán, Mexico. Vector-Borne and Zoonotic Diseases, 2021, 21, 884-891.	0.6	2
79	Continued Need for Comprehensive Genetic and Phenotypic Characterization of Viruses: Benefits of Complementing Sequence Analyses with Functional Determinations. American Journal of Tropical Medicine and Hygiene, 2018, 98, 1213-1213.	0.6	2
80	Cluster Analysis of Dengue Morbidity and Mortality in Mexico from 2007 to 2020: Implications for the Probable Case Definition. American Journal of Tropical Medicine and Hygiene, 2022, , .	0.6	2
81	Molecular Cloning and Complete cDNA Sequences of the Ribosomal Proteins rpL34 and rpL44 from <i>Aedes Triseriatus</i> Mosquitoes. DNA Sequence, 2000, 11, 451-455.	0.7	0
82	Complete nucleotide sequences of the large RNA genome segments of Main Drain and Northway viruses (family Peribunyaviridae). Archives of Virology, 2018, 163, 2253-2255.	0.9	0