Mark S Mcclain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7112684/publications.pdf

Version: 2024-02-01

172386 182361 2,648 58 29 51 citations h-index g-index papers 58 58 58 2129 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	An Overview of Helicobacter pylori VacA Toxin Biology. Toxins, 2016, 8, 173.	1.5	155
2	Essential Role of a GXXXG Motif for Membrane Channel Formation by Helicobacter pylori Vacuolating Toxin. Journal of Biological Chemistry, 2003, 278, 12101-12108.	1.6	144
3	Helicobacter pylori Exploits a Unique Repertoire of Type IV Secretion System Components for Pilus Assembly at the Bacteria-Host Cell Interface. PLoS Pathogens, 2011, 7, e1002237.	2.1	144
4	Crystal structure of the <i>Helicobacter pylori</i> vacuolating toxin p55 domain. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16293-16298.	3.3	143
5	Association of Helicobacter pylori Vacuolating Toxin (VacA) with Lipid Rafts. Journal of Biological Chemistry, 2002, 277, 34642-34650.	1.6	134
6	A Dominant Negative Mutant of Helicobacter pyloriVacuolating Toxin (VacA) Inhibits VacA-induced Cell Vacuolation. Journal of Biological Chemistry, 1999, 274, 37736-37742.	1.6	123
7	A 12-Amino-Acid Segment, Present in Type s2 but Not Type s1 Helicobacter pylori VacA Proteins, Abolishes Cytotoxin Activity and Alters Membrane Channel Formation. Journal of Bacteriology, 2001, 183, 6499-6508.	1.0	110
8	Genome sequence analysis of Helicobacter pylori strains associated with gastric ulceration and gastric cancer. BMC Genomics, 2009, 10, 3.	1.2	106
9	Helicobacter pylori Vacuolating Toxin and Gastric Cancer. Toxins, 2017, 9, 316.	1.5	101
10	Helicobacter pylori VacA Induces Programmed Necrosis in Gastric Epithelial Cells. Infection and Immunity, 2011, 79, 2535-2543.	1.0	99
11	Extracellular Release of Antigenic Proteins by <i>Helicobacter pylori</i> . Infection and Immunity, 1998, 66, 2984-2986.	1.0	88
12	Acid activation of Helicobacter pylori vacuolating cytotoxin (VacA) results in toxin internalization by eukaryotic cells. Molecular Microbiology, 2000, 37, 433-442.	1.2	87
13	Reconstruction and functional analysis of altered molecular pathways in human atherosclerotic arteries. BMC Genomics, 2009, 10, 13.	1.2	80
14	The Myelin and Lymphocyte Protein MAL Is Required for Binding and Activity of Clostridium perfringens Îμ-Toxin. PLoS Pathogens, 2015, 11, e1004896.	2.1	69
15	Functional Properties of the p33 and p55 Domains of the Helicobacter pylori Vacuolating Cytotoxin. Journal of Biological Chemistry, 2005, 280, 21107-21114.	1.6	68
16	Protein-Protein Interactions among Helicobacter pylori Cag Proteins. Journal of Bacteriology, 2006, 188, 4787-4800.	1.0	63
17	Gene-Trap Mutagenesis Identifies Mammalian Genes Contributing to Intoxication by Clostridium perfringens ε-Toxin. PLoS ONE, 2011, 6, e17787.	1.1	62
18	Amino-Terminal Hydrophobic Region ofHelicobacter pylori Vacuolating Cytotoxin (VacA) Mediates Transmembrane Protein Dimerization. Infection and Immunity, 2001, 69, 1181-1184.	1.0	53

#	Article	IF	Citations
19	Interactions between p-33 and p-55 Domains of the Helicobacter pylori Vacuolating Cytotoxin (VacA). Journal of Biological Chemistry, 2004, 279, 2324-2331.	1.6	49
20	Analysis of <i>cagA</i> in <i>Helicobacter pylori</i> Strains from Colombian Populations with Contrasting Gastric Cancer Risk Reveals a Biomarker for Disease Severity. Cancer Epidemiology Biomarkers and Prevention, 2011, 20, 2237-2249.	1.1	46
21	Identification of Amino Acids Important for Binding of <i>Clostridium perfringens</i> Epsilon Toxin to Host Cells and to HAVCR1. Biochemistry, 2012, 51, 7588-7595.	1.2	45
22	<i>Helicobacter pylori</i> VacA Subdomain Required for Intracellular Toxin Activity and Assembly of Functional Oligomeric Complexes. Infection and Immunity, 2008, 76, 2843-2851.	1.0	42
23	Oligomerization of Clostridium perfringens Epsilon Toxin Is Dependent upon Caveolins 1 and 2. PLoS ONE, 2012, 7, e46866.	1.1	42
24	<i>Helicobacter pylori</i> HopQ outer membrane protein attenuates bacterial adherence to gastric epithelial cells. FEMS Microbiology Letters, 2008, 289, 53-58.	0.7	41
25	Reconstitution of <i>Helicobacter pylori</i> VacA Toxin from Purified Components. Biochemistry, 2010, 49, 5743-5752.	1.2	38
26	Functional Analysis of Neutralizing Antibodies against Clostridium perfringens Epsilon-Toxin. Infection and Immunity, 2007, 75, 1785-1793.	1.0	37
27	Role of Connexin 43 in Helicobacter pylori VacA-Induced Cell Death. Infection and Immunity, 2014, 82, 423-432.	1.0	37
28	The Intermediate Region of Helicobacter pylori VacA Is a Determinant of Toxin Potency in a Jurkat T Cell Assay. Infection and Immunity, 2012, 80, 2578-2588.	1.0	33
29	Kinetics and Mechanisms of Extracellular Protein Release by <i>Helicobacter pylori</i> Immunity, 1999, 67, 5247-5252.	1.0	31
30	Dominant-negative Inhibitors of the Clostridium perfringens ϵ-Toxin. Journal of Biological Chemistry, 2009, 284, 29446-29453.	1.6	30
31	Comparative Genomic Analysis of East Asian and Non-Asian Helicobacter pylori Strains Identifies Rapidly Evolving Genes. PLoS ONE, 2013, 8, e55120.	1.1	27
32	Identification of Small Molecule Inhibitors of Clostridium perfringens Îμ-Toxin Cytotoxicity Using a Cell-Based High-Throughput Screen. Toxins, 2010, 2, 1825-1847.	1.5	26
33	Bacterial Energetic Requirements for Helicobacter pylori Cag Type IV Secretion System-Dependent Alterations in Gastric Epithelial Cells. Infection and Immunity, 2020, 88, .	1.0	22
34	A Nonoligomerizing Mutant Form of Helicobacter pylori VacA Allows Structural Analysis of the p33 Domain. Infection and Immunity, 2016, 84, 2662-2670.	1.0	19
35	Antigenic Diversity among Helicobacter pyloriVacuolating Toxins. Infection and Immunity, 2001, 69, 4329-4336.	1.0	18
36	Analysis of a \hat{I}^2 -helical region in the p55 domain of Helicobacter pylori vacuolating toxin. BMC Microbiology, 2010, 10, 60.	1.3	18

#	Article	IF	CITATIONS
37	Coenzyme depletion by members of the aerolysin family of pore-forming toxins leads to diminished ATP levels and cell death. Molecular BioSystems, 2012, 8, 2097.	2.9	18
38	Delineation of the pH-Responsive Regulon Controlled by the Helicobacter pylori ArsRS Two-Component System. Infection and Immunity, 2021, 89, .	1.0	17
39	Expression of Helicobacter pylori Vacuolating Toxin in Escherichia coli. Infection and Immunity, 2003, 71, 2266-2271.	1.0	16
40	Mapping of a Domain Required for Protein-Protein Interactions and Inhibitory Activity of a Helicobacter pylori Dominant-Negative VacA Mutant Protein. Infection and Immunity, 2006, 74, 2093-2101.	1.0	15
41	Colistin-Functionalized Nanoparticles for the Rapid Capture of <i>Acinetobacter baumannii</i> Journal of Biomedical Nanotechnology, 2016, 12, 1806-1819.	0.5	15
42	Lipoprotein Processing and Sorting in Helicobacter pylori. MBio, 2020, 11, .	1.8	15
43	Temporal Control of the Helicobacter pylori Cag Type IV Secretion System in a Mongolian Gerbil Model of Gastric Carcinogenesis. MBio, 2020, $11, \ldots$	1.8	15
44	Effect of environmental salt concentration on the Helicobacter pylori exoproteome. Journal of Proteomics, 2019, 202, 103374.	1,2	14
45	Control of gene expression in Helicobacter pylori using the Tet repressor. Journal of Microbiological Methods, 2013, 95, 336-341.	0.7	13
46	Random Mutagenesis of Helicobacter pylori vacA To Identify Amino Acids Essential for Vacuolating Cytotoxic Activity. Infection and Immunity, 2006, 74, 6188-6195.	1.0	11
47	Genome Sequences of Three hpAfrica2 Strains of Helicobacter pylori. Genome Announcements, 2013, 1, .	0.8	11
48	Magnetic Extraction of <i>Acinetobacter baumannii</i> Using Colistin-Functionalized γ-Fe ₂ O ₃ /Au Core/Shell Composite Nanoclusters. ACS Applied Materials & Amp; Interfaces, 2017, 9, 26719-26730.	4.0	10
49	Functional Properties of Helicobacter pylori VacA Toxin m $\bf 1$ and m $\bf 2$ Variants. Infection and Immunity, 2020, 88, .	1.0	9
50	Construction of an alkaline phosphatase fusion-generating transposon, mTn10phoA. Gene, 1996, 170, 147-148.	1.0	8
51	Role of a Stem-Loop Structure in <i>Helicobacter pylori cagA</i> Transcript Stability. Infection and Immunity, 2019, 87, .	1.0	8
52	Dynamic Computational Model of Symptomatic Bacteremia to Inform Bacterial Separation Treatment Requirements. PLoS ONE, 2016, 11, e0163167.	1.1	7
53	Functional Properties of Oligomeric and Monomeric Forms of Helicobacter pylori VacA Toxin. Infection and Immunity, 2021, 89, e0034821.	1.0	5
54	Enhanced Fitness of a Helicobacter pylori babA Mutant in a Murine Model. Infection and Immunity, 2021, 89, e0072520.	1.0	3

#	Article	IF	CITATIONS
55	Positive Selection of Mutations in the Helicobacter pylori <i>katA</i> 5′ Untranslated Region in a Mongolian Gerbil Model of Gastric Disease. Infection and Immunity, 0, , .	1.0	3
56	Genetic signatures for Helicobacter pylori strains of West African origin. PLoS ONE, 2017, 12, e0188804.	1.1	2
57	Helicobacter pylori vacuolating toxin. , 2006, , 468-490.		2
58	Inertial-based Fluidic Platform for Rapid Isolation of Blood-borne Pathogens. Military Medicine, 2021, 186, 129-136.	0.4	1