Jan Pekarek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7112537/publications.pdf

Version: 2024-02-01

37	515	11	22
papers	citations	h-index	g-index
37	37	37	919
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	A novel technology for the corrosion protection of iron archaeological artefacts using parylene base removable bilayer. Journal of Cultural Heritage, 2020, 42, 28-35.	3.3	2
2	Parylene micropillars coated with thermally grown SiO2. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2020, 38, .	1.2	2
3	Droplet-based differential microcalorimeter for real-time energy balance monitoring. Sensors and Actuators B: Chemical, 2020, 312, 127967.	7.8	6
4	Recent advances in lab-on-a-chip technologies for viral diagnosis. Biosensors and Bioelectronics, 2020, 153, 112041.	10.1	163
5	Simple and Efficient AlN-Based Piezoelectric Energy Harvesters. Micromachines, 2020, 11, 143.	2.9	17
6	Infinite Selectivity of Wet SiO2 Etching in Respect to Al. Micromachines, 2020, 11, 365.	2.9	3
7	nanolithography toolbox—Simplifying the design complexity of microfluidic chips. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2020, 38, 063002.	1.2	7
8	Revealing the secrets of PCR. Sensors and Actuators B: Chemical, 2019, 298, 126924.	7.8	15
9	Preparation of high-quality stress-free (001) aluminum nitride thin film using a dual Kaufman ion-beam source setup. Thin Solid Films, 2019, 670, 105-112.	1.8	11
10	<i>In situ</i> observation of carbon nanotube layer growth on microbolometers with substrates at ambient temperature. Journal of Applied Physics, 2018, 123, .	2.5	7
11	Single Measurement Determination of Mechanical, Electrical, and Surface Properties of a Single Carbon Nanotube via Force Microscopy. Sensors and Actuators A: Physical, 2018, 271, 217-222.	4.1	5
12	A New Method for 2D Materials Properties Modulation by Controlled Induced Mechanical Strain. Proceedings (mdpi), 2018, 2, .	0.2	0
13	Fabrication of buried microfluidic channels with observation windows using femtosecond laser photoablation and parylene-C coating. Microfluidics and Nanofluidics, 2018, 22, 1.	2.2	3
14	Monoelemental 2D materials-based field effect transistors for sensing and biosensing: Phosphorene, antimonene, arsenene, silicene, and germanene go beyond graphene. TrAC - Trends in Analytical Chemistry, 2018, 105, 251-262.	11.4	67
15	Precise determination of thermal parameters of a microbolometer. Infrared Physics and Technology, 2018, 93, 286-290.	2.9	13
16	Stress-free deposition of [001] preferentially oriented titanium thin film by Kaufman ion-beam source. Thin Solid Films, 2017, 638, 57-62.	1.8	5
17	Self-compensating method for bolometer–based IR focal plane arrays. Sensors and Actuators A: Physical, 2017, 265, 40-46.	4.1	4
18	A Self-compensating System for Fixed Pattern Noise Reduction of Focal Plane Arrays of Infrared Bolometer Detectors. Procedia Engineering, 2016, 168, 1007-1011.	1.2	3

#	Article	IF	Citations
19	Circuits for the Charge Push-through Electronics: Power Efficient Signal Processing Inside the Artificial Cochlear Implant. Procedia Engineering, 2016, 168, 1710-1713.	1.2	O
20	Stress and charge transfer in uniaxially strained CVD graphene. Physica Status Solidi (B): Basic Research, 2016, 253, 2355-2361.	1.5	12
21	The charge push-through electronics design for fully implantable artificial cochlea powered by energy harvesting technologies. Microsystem Technologies, 2016, 22, 1709-1719.	2.0	2
22	Surface analysis of polymeric substrates used for inkjet printing technology. Circuit World, 2016, 42, 9-16.	0.9	56
23	Model-based design of artificial zero power cochlear implant. Mechatronics, 2015, 31, 30-41.	3.3	8
24	Design of the charge push-through electronics for fully implantable artificial cochlea. , 2015, , .		2
25	MEMS Carbon Nanotubes Field Emission Pressure Sensor With Simplified Design: Performance and Field Emission Properties Study. IEEE Sensors Journal, 2015, 15, 1430-1436.	4.7	21
26	Design and Fabrication of Fully Implantable MEMS Cochlea. Procedia Engineering, 2015, 100, 1224-1231.	1.2	4
27	Sensing Properties of Multiwalled Carbon Nanotubes Grown in MW Plasma Torch: Electronic and Electrochemical Behavior, Gas Sensing, Field Emission, IR Absorption. Sensors, 2015, 15, 2644-2661.	3.8	41
28	Design of an Artificial Microelectromechanical Cochlea. Solid State Phenomena, 2015, 220-221, 345-348.	0.3	1
29	Comparison of different modifications of screen-printed working electrodes of electrochemical sensors using carbon nanotubes and plasma treatment. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2756-2764.	1.8	6
30	Cu <inf>2</inf> O based electrochemical sensor for direct glucose detection., 2013,,.		0
31	Simultaneous detection of purine bases on Cu <inf>2</inf> O nanoparticles based electrochemical biosensor., 2012,,.		1
32	Voltammetric Sensor for Direct Insulin Detection. Procedia Engineering, 2012, 47, 1235-1238.	1.2	17
33	Novel Electrochemical Biosensor for Simultaneous Detection of Adenine and Guanine Based on Cu2O Nanoparticles. Procedia Engineering, 2012, 47, 702-705.	1.2	7
34	Preparation of freestanding carbon nanotubes using plasma enhanced chemical vapor deposition. , $2011, , .$		0
35	Capacitive Pressure Sensor Modelling. , 2009, , .		1
36	Electrodes modified by carbon nanotubes for pressure measuring. , 2009, , .		2

Article IF Citations

Carbon nanostructures used in capacitive sensors as the surface increase element. , 2009, , .

1