Andrei Khrennikov

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/7112483/publications.pdf
Version: 2024-02-01


```
Order stability via FrÃभhlich condensation in bio, eco, and social systems: The quantum-like approach.
BioSystems, 2022, 212, }104593
\(1 \quad\) BioSystems, 2022, 212, 104593.
```

2.0 6

Towards Unification of General Relativity and Quantum Theory: Dendrogram Representation of the Event-Universe. Entropy, 2022, 24, 181.
2.2 6

Giorgio Parisi: The Nobel Prize in Physics 2021. P-Adic Numbers, Ultrametric Analysis, and Applications,
2022, 14, 81-83.
Giorgio Parisi: The Nobel Prize in Physics 2021. P-Adic Numbers, Ultrametric Analysis, and Applications,
2022, 14, 81-83.
$0.4 \quad 1$

Against Identification of Contextuality with Violation of the Bell Inequalities: Lessons from Theory of
Against Identification of Contextuality with Violation of the Bell Ineq
Randomness. Journal of Russian Laser Research, 2022, 43, 48-59.
0.63
$5 \quad$ Ambivalence in decision making: An eye tracking study. Cognitive Psychology, 2022, 134, 101464.
$2.2 \quad 7$

6 Social FrÃ \uparrow hlich condensation: preserving societal order through sufficiently intensive information pumping. Kybernetes, 2022, 51, 138-155.
$2.2 \quad 2$

7 Dendrographic Hologram Theory: Predictability of Relational Dynamics of the Event Universe and the
7 Emergence of Time Arrow. Symmetry, 2022, 14, 1089.
$8 \quad$ Can There be Given Any Meaning to Contextuality Without Incompatibility?. International Journal of 8 Theoretical Physics, 2021, 60, 106-114.

9 Quantum postulate vs. quantum nonlocality: on the role of the Planck constant in Bellâ $€^{\mathrm{TM}} \mathrm{S}$ argument.
Foundations of Physics, 2021, 51, 1.

Information overload for (bounded) rational agents. Proceedings of the Royal Society B: Biological
$10 \quad \begin{aligned} & \text { Information overload for (bounded) } \\ & \text { Sciences, 2021, 288, } 20202957 .\end{aligned}$
2.6

15
Quantum-like modeling in biology with open quantum systems and instruments. BioSystems, 2021, 201,
$2.0 \quad 25$

11

Order-Stability in Complex Biological, Social, and AI-Systems from Quantum Information Theory.
12 Entropy, 2021, 23, 355.
2.25

Roots of quantum computing supremacy: superposition, entanglement, or complementarity?. European
Physical Journal: Special Topics, 2021, 230, 1053-1057.

14 Is the Devil in h?. Entropy, 2021, 23, 632.
2.2

16

15 Representation of the Universe as a Dendrogramic Hologram Endowed with Relational Interpretation.
2.2

16
Entropy, 2021, 23, 584.

Dendrogramic Representation of Data: CHSH Violation vs. Nonergodicity. Entropy, 2021, 23, 971.
2.2

5

Formalization of Bohrâ $\epsilon^{T M_{S}}$ Contextuality Within the Theory of Open Quantum Systems. Journal of
Russian Laser Research, 2021, 42, 371-377.
0.6

4

EEG p-adic quantum potential accurately identifies depression, schizophrenia and cognitive decline.
PLoS ONE, 2021, 16, e0255529.
19
20

$$
\begin{aligned}
& \text { Quantum-like model for unconsciousâ } €^{\prime \prime} \text { conscious interaction and emotional coloring of perceptions } \\
& \text { and other conscious experiences. BioSystems, } 2021,208,104471 .
\end{aligned}
$$

2.0

```
27 Social Laser Model for the Bandwagon Effect: Generation of Coherent Information Waves. Entropy,
    2020, 22, 559.
```

Psychological ấ $€^{\sim}$ double-slit experimentâ $€^{T M}$ in decision making: Quantum versus classical. BioSystems, 2020,
195,104171 .

A Readerâ T^{TM} S Comment on: â $€$ œHysteresis Model of Unconscious-Conscious Interconnection: Exploring

0.4
08

Psychological
$195,104171$.
$2.0 \quad 8$

Quantum Versus Classical Entanglement: Eliminating the Issue of Quantum Nonlocality. Foundations
1.3

33
of Physics, 2020, 50, 1762-1780.

A Quantum-Like Model of Information Processing in the Brain. Applied Sciences (Switzerland), 2020, 10,
2.5

15
707.

Application of Theory of Quantum Instruments to Psychology: Combination of Question Order Effect
2.2

24
with Response Replicability Effect. Entropy, 2020, 22, 37.

HAS CHSH-INEQUALITY ANY RELATION TO EPR-ARGUMENT?., 2020, , .
Generalized Fock space and contextuality. Philosophical Transactions Series A, Mathematical, Physical,
and Engineering Sciences, 2019, 377, 20190096.

38 Hertzâ€ ${ }^{T M} \mathrm{~s}$ Viewpoint on Quantum Theory. Activitas Nervosa Superior, 2019, 61, 24-30.
0.4

Concept of information laser: from quantum theory to behavioural dynamics. European Physical Journal: Special Topics, 2019, 227, 2133-2153.

Bell inequality violation in the framework of a Darwinian approach to quantum mechanics. European
$40 \quad \begin{aligned} & \text { Bell inequality violation in the framework of a Darwinian } \\ & \text { Physical Journal: Special Topics, 2019, 227, 2119-2132. }\end{aligned}$
2.61

Classical (Local and Contextual) Probability Model for Bohmâ€"Bell Type Experiments: No-Signaling as
Independence of Random Variables. Entropy, 2019, 21, 157.

Classical versus quantum probability: Comments on the paper â€œOn universality of classical probability
42 with contextually labeled random variablesâ $€ \cdot b y$ E. Dzhafarov and M. Kon. Journal of Mathematical Psychology, 2019, 89, 87-92.

43 p-Adic Analogue of the Wave Equation. Journal of Fourier Analysis and Applications, 2019, 25,
2447-2462.

Quantum analog of the original Bell inequality for two-qudit states with perfect
correlations/anticorrelations. Journal of Physics A: Mathematical and Theoretical, 2019, 52, 435304.

Perspectives on Correctness in Probabilistic Inference from Psychology. Spanish Journal of
Psychology, 2019, 22, E55.

Solvability of the p-adic Analogue of Navierâ€"Stokes Equation via the Wavelet Theory. Entropy, 2019, 21,
1129.

Phase transitions, collective emotions and decision-making problem in heterogeneous social systems.
Scientific Reports, 2019, 9, 18039.

Quantum Probability and Randomness. Entropy, 2019, 21, 35.
2.2

Basics of Quantum Theory for Quantum-Like Modeling Information Retrieval. STEAM-H: Science,
Technology, Engineering, Agriculture, Mathematics \& Health, 2019, , 51-82.

True contextuality beats direct influences in human decision making.. Journal of Experimental Psychology: General, 2019, 148, 1925-1937.
2.1

42

Quantum like modeling of decision making: Quantifying uncertainty with the aid of
1.8

Heisenbergâ€"Robertson inequality. Journal of Mathematical Psychology, 2018, 84, 49-56.

Quantum-like model of subjective expected utility. Journal of Mathematical Economics, 2018, 78,
150-162.

Social laser model: from color revolutions to Brexit and election of Donald Trump. Kybernetes, 2018,
47, 273-288.

From axiomatics of quantum probability to modelling geological uncertainty and management of
$55 \quad$ Towards Better Understanding QBism. Foundations of Science, 2018, 23, 181-195.

Quantum field inspired model of decision making: Asymptotic stabilization of belief state via
56 interaction with surrounding mental environment. Journal of Mathematical Psychology, 2018, 82,
1.8 159-168.
$57 \quad \begin{aligned} & \text { p-Adic Analogue of the Porous Medium Equation. Journal of Fourier Analysis and Applications, } 20 \\ & 24,1401-1424 .\end{aligned}$
$58 \quad \begin{aligned} & \text { Evaluating the Maximal Violation of the Original Bell Inequality by Two-Qudit States Exhibiting } \\ & \text { Perfect Correlations/Anticorrelations. Entropy, 2018, 20, 829. }\end{aligned}$ Perfect Correlations/Anticorrelations. Entropy, 2018, 20, 829.

59 On Interpretational Questions for Quantum-Like Modeling of Social Lasing. Entropy, 2018, $20,921$.
$2.2 \quad 18$

On the Solutions of Cauchy Problem for Two Classes of Semi-Linear Pseudo-Differential Equations 60 over p-Adic Field. P-Adic Numbers, Ultrametric Analysis, and Applications, 2018, 10, 322-343.
0.4

2
Quantum probability in decision making from quantum information representation of neuronal
states. Scientific Reports, 2018, 8, 16225.

$62 \quad$| Mechanisms of directed evolution of morphological structures and the problems of morphogenesis. |
| :--- |
| BioSystems, 2018, 168, 26-44. |

63 External Observer Reflections on QBism, Its Possible Modifications, and Novel Applications. STEAM-H:
Science, Technology, Engineering, Agriculture, Mathematics \& Health, 2018, , 93-118.

64 Towards Experiments to Test Violation of the Original Bell Inequality. Entropy, 2018, 20, 280.
2.2

10

65 State Entropy and Differentiation Phenomenon. Entropy, 2018, $20,394$.
$2.2 \quad 6$

66 At the Crossroads of Three Seemingly Divergent Approaches to Quantum Mechanics. STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics \& Health, 2018, , 13-21.
0.0

0
67 Quantum probability updating from zero priors (by-passing Cromwellâ $€^{T M}$ s rule). Journal of Mathematical
Psychology, 2017, 77, 58-69.

Quantum epistemology from subquantum ontology: Quantum mechanics from theory of classical random fields. Annals of Physics, 2017, 377, 147-163.
2.8

17

Automaton model of protein: Dynamics of conformational and functional states. Progress in
Biophysics and Molecular Biology, 2017, 130, 2-14.
2.9

10

On the topological structure of a mathematical model of human unconscious. P-Adic Numbers,
Ultrametric Analysis, and Applications, 2017, 9, 78-81.
0.4

8

Emergence of Quantum Mechanics from Theory of Random Fields. Journal of Russian Laser Research,
2017, 38, 9-26.
0.6

2
Energy and information flows in biological systems: Bioenergy transduction of V 1 -ATPase rotary
motor and dynamics of thermodynamic entropy in information flows. Progress in Biophysics and
Molecular Biology, 2017, 130, 33-38.

74 Molecular recognition of the environment and mechanisms of the origin of species in quantum-like modeling of evolution. Progress in Biophysics and Molecular Biology, 2017, 130, 61-79.
2.9

7
75 Why Quantum?. , 2017, , 321-334.
0
p-Adic mathematical physics: the first 30 years. P-Adic Numbers, Ultrametric Analysis, and Applications,
Outline of a unified Darwinian evolutionary theory for physical and biological systems. Progress in
Biophysics and Molecular Biology, 2017, 130, 80-87.

78 Measures on the Hilbert space of a quantum system. Russian Journal of Mathematical Physics, 2017, 24,
234-240.
$1.5 \quad 2$
Quantum-like model of partially directed evolution. Progress in Biophysics and Molecular Biology,
$2017,125,36-51$.
A model of adaptive decision-making from representation of information environment by quantum
fields. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375,
20170162 .
Quantum Bayesian perspective for intelligence reservoir characterization, monitoring and
81 management. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences,

Preface for the special issue, â€ $€^{\sim}$ Second quantum revolution: foundational questionsâ $€^{T M}$. Philosophical
82 Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160397.
$3.4 \quad 0$
83 A HYSTERESIS EFFECT ON OPTICAL ILLUSION AND NON-KOLMOGOROVIAN PROBABILITY THEORY. Lecture Notes Series, Institute for Mathematical Sciences, 2017, , 201-213.Test of the noâ€signaling principle in the Hensen loopholeâ€£ree CHSH experiment. Fortschritte Der4.425Physik, 2017, 65, 1600096.

$1.3 \quad 9$
85 The Present Situation in Quantum Theory and its Merging with General Relativity. Foundations of
Physics, 2017, 47, 1077-1099.
9

86 Buonomano against Bell: Nonergodicity or nonlocality?. International Journal of Quantum
1.15 Information, 2017, 15, 1740010.
$1.1-5$
87 Editorial. Progress in Biophysics and Molecular Biology, 2017, 130, 1. 2.9

0
91 After Bell. Fortschritte Der Physik, 2017, 65, 1600044. 4.4

92 Transport through a network of capillaries from ultrametric diffusion equation with quadratic
1.5

3 nonlinearity. Russian Journal of Mathematical Physics, 2017, 24, 505-516.
93 Bohr against Bell: complementarity versus nonlocality. Open Physics, 2017, 15, 734-738. $\quad 1.7-27$
 social laser. Journal of Physics: Conference Series, 2017, 880, 012017.
$0.4 \quad 0$

95	P-Adic Analog of Navierâ $\epsilon^{\prime \prime}$ Stokes Equations: Dynamics of Fluidâ $\epsilon^{T M}$ S Flow in Percolation Networks 2017, 19, 161.	$\begin{gathered} 110.784314 \mathrm{rgBT} \\ 2.2 \quad 6 \end{gathered}$	
96	A model of differentiation in quantum bioinformatics. Progress in Biophysics and Molecular Biology, 2017, 130, 88-98.	2.9	21
97			26

98 Summation of p-adic functional series in integer points. Filomat, 2017, 31, 1339-1347. $\quad 0.51$
Image Segmentation with the Aid of the p-Adic Metrics. STEAM-H: Science, Technology, Engineering,
Agriculture, Mathematics \& Health, 2017, ,143-154.
109

Application of Non-Kolmogorovian Probability and Quantum Adaptive Dynamics to Unconscious
Inference in Visual Perception Process. Open Systems and Information Dynamics, $2016,23,165001$
$1.2 \quad 4$
Inference in Visual Perception Process. Open Systems and Information Dynamics, 2016, 23, 1650011.

Quantum formalism as an optimisation procedure of information flows for physical and biological
systems. BioSystems, 2016,150,13-21.
110

$$
7
$$

113 â $€^{\sim}$ Social Laserâ $€^{T M}$: action amplification by stimulated emission of social energy. Philosophical 3.4

Quantum probability and the mathematical modelling of decision-making. Philosophical Transactions
Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150105.
3.4
Statistical and subjective interpretations of probability in quantum-like models of cognition and
decision making. Journal of Mathematical Psychology, 2016, 74, 82-91.
1.8115
Generalization of Hensel's lemma: Finding the roots of p-adic Lipschitz functions. Journal of Number 116 Theory, 2016, 158, 217-233.
117 Application of p-Adic Wavelets to Model Reactionâ€" Diffusion Dynamics in Random Porous Media.Journal of Fourier Analysis and Applications, 2016, 22, 809-822.23

24
118 Branko Dragovich. Facta Universitatis - Series Physics Chemistry and Technology, 2016, 14, 135-141.0.51
119 Hierarchical model of the actomyosin molecular motor based on ultrametric diffusion with drift. Infinite Dimensional Analysis, Quantum Probability and Related Topics, 2015, 18, 1550013. 0.5 5
120 Towards Information Lasers. Entropy, 2015, 17, 6969-6994. 2.2 30
121 Quantum-like modeling of cognition. Frontiers in Physics, 2015, 3, . 2.1 33
122 Quantum-like model of unconsciousâ€"conscious dynamics. Frontiers in Psychology, 2015, 6, 997.2.132A macroscopic violation of no-signaling in time inequalities? How to test temporal entanglement with123 A macroscopic violation of no-signaling in time inequalities? How
2.1 9Analysis, and Applications, 2015, 7, 96-110.
127 Reality Without Realism: On the Ontological and Epistemological Architecture of Quantum1.3
Quantum Information Biology: From Information Interpretation of Quantum Mechanics to
128 Applications in Molecular Biology and Cognitive Psychology. Foundations of Physics, 2015, 45,
1.3
1362-1378.
129 Nontrivial quantum and quantum-like effects in biosystems: Unsolved questions and paradoxes.
2.9
Progress in Biophysics and Molecular Biology, 2015, 119, 137-161.

38

130 Two-slit experiment: quantum and classical probabilities. Physica Scripta, 2015, 90, 074017.
2.5

8

131 Preface of the Special Issue Probing the Limits of Quantum Mechanics: Theory and Experiment, Volume

1. Foundations of Physics, 2015, 45, 707-710.
1.3

9

132 Quantum Adaptivity in Biology: From Genetics to Cognition. , 2015, , .
135 Quantum version of Aumannâ $€^{T M}$ s approach to common knowledge: Sufficient conditions of impossibility to agree on disagree. Journal of Mathematical Economics, 2015, 60, 89-104.
$0.8 \quad 22$

Prequantum Classical Statistical Field Theory: Simulation of Probabilities of Photon Detection from
136 Brownian Motion Interacting with Threshold Detectors. Journal of Russian Laser Research, 2015, 36,
0.6

1 237-250.

137 Hysteresis model of unconscious-conscious interconnection: Exploring dynamics on m-adic trees.
P-Adic Numbers, Ultrametric Analysis, and Applications, 2015, 7, 312-321.
$0.4 \quad 15$

CHSH Inequality: Quantum Probabilities as Classical Conditional Probabilities. Foundations of Physics,
2015, 45, 711-725.
1.3

46

Quantum(-Like) Decision Making: On Validity of the Aumann Theorem. Lecture Notes in Computer Science, 2015, , 105-118.
1.3

3
$139 \quad$ Quience, 2015, , 105-118.

Quantum(-like) Formalization of Common Knowledge: Binmore-Brandenburger Operator Approach.
1.3

0
140 Lecture Notes in Computer Science, 2015, , 93-104.

Lamarckian Evolution of Epigenome from Open Quantum Systems and Entanglement. Lecture Notes in
Computer Science, 2014, , 324-334.
1.3

0

142 Recursion over partitions. P-Adic Numbers, Ultrametric Analysis, and Applications, 2014, 6, 303-309.
0.4

0

Violation of contextual generalization of the Leggettâ€"Garg inequality for recognition of ambiguous
2.5

P-Adic Numbers, Ultrametric Analysis, and Applications, 2014, 6, 293-302.

145 | Quantum Model for Psychological Measurements: From the Projection Postulate to Interference of |
| :--- |
| Mental Observables Represented As Positive Operator Valued Measures. NeuroQuantology, 2014, 12, . | 2014, , .

147 Applying quantum principles to psychology. Physica Scripta, 2014, T163, 014007. 2.5 28
Estimation of initial one photon temporal modes in waveguides using the asymptotic radiation zone.
149 On the equivalence of the Clauserâ€"Horne and Eberhard inequality based tests. Physica Scripta, 2014, T163, 014019.2.5Quantum non-objectivity from performativity of quantum phenomena. Physica Scripta, 2014, T163,014020.
Emerging quantum mechanics: Coefficient of second-order coherence from classical random fields
151 interacting with threshold type detectors. International Journal of Quantum Information, 2014, 12,1560007.
152 Criteria of ergodicity for p-adic dynamical systems in terms of coordinate functions. Chaos, Solitonsand Fractals, 2014, 60, 11-30.
An Application of the Theory of Open Quantum Systems to Model the Dynamics of Party Governance inthe US Political System. International Journal of Theoretical Physics, 2014, 53, 1346-1360.
Quantum-State Dynamics as Linear Representation of Classical (Nonlinear) Stochastic Dynamics.Journal of Russian Laser Research, 2014, 35, 71-78.
T-functions revisited: new criteria for bijectivity/transitivity. Designs, Codes, and Cryptography, 2014,
71, 383-407.
1.6 36
Photon Flux and Distance from the Source: Consequences for Quantum Communication. Foundations
of Physics, 2014, 44, 389-405.
of Physics, 2014, 44, 389-405. 156
1.3 6
157 Complementarity of Mental Observables. Topics in Cognitive Science, 2014, 6, 74-78.1.93p-Adic wavelets and their applications. Proceedings of the Steklov Institute of Mathematics, 2014, 285,
157-196. 158
Possibility to agree on disagree from quantum information and decision making. Journal of Mathematical Psychology, 2014, 62-63, 1-15.1.841Bornâ $€^{T M}$ s formula from statistical mechanics of classical fields and theory of hitting times. Physica A:

163	Adaptive Dynamics and Optical Illusion on SchrÃ千derâ $€^{T M}$ s Stair. Lecture Notes in Computer Science, 2014, , 191-200.	1.3	0
164	Non-Kolmogorovian Approach to the Context-Dependent Systems Breaking the Classical Probability Law. Foundations of Physics, 2013, 43, 895-911.	1.3	35
165	Quantum-Like Tunnelling and Levels of Arbitrage. International Journal of Theoretical Physics, 2013, 52, 4083-4099.	1.2	10
166	In memory of Vladimir M. Shelkovich (1949âe"2013). P-Adic Numbers, Ultrametric Analysis, and Applications, 2013, 5, 242-245.	0.4	0
167	Adelic Multiresolution Analysis, Construction of Wavelet Bases and Pseudo-Differential Operators. Journal of Fourier Analysis and Applications, 2013, 19, 1323-1358.	1.0	21
168	Measure-free viewpoint on p-adic and adelic wavelets. P-Adic Numbers, Ultrametric Analysis, and Applications, 2013, 5, 204-217.	0.4	3
169	Criteria of measure-preserving for p -adic dynamical systems in terms of the van der Put basis. Journal of Number Theory, 2013, 133, 484-491.	0.4	32
170	A model of epigenetic evolution based on theory of open quantum systems. Systems and Synthetic Biology, 2013, 7, 161-173.	1.0	37
171	The Schrãๆdingerâ€"Robinson inequality from stochastic analysis on a complex Hilbert space. Physica Scripta, 2013, 87, 038109.	2.5	0
172	Measurement problem: from De Broglie to theory of classical random fields interacting with threshold detectors. Journal of Physics: Conference Series, 2013, 442, 012011.	0.4	0
173	â€œEinstein's Dreamâ€â€"Quantum Mechanics as Theory of Classical Random Fields. Reviews in Theoretical Science, 2013, 1, 34-57.	0.5	5
174	Ergodicity criteria for non-expanding transformations of 2-adic spheres. Discrete and Continuous Dynamical Systems, 2013, 34, 367-377.	0.9	4
175	Quantum probabilities from a mathematical model of threshold detection of classical random waves. Journal of Physics A: Mathematical and Theoretical, 2012, 45, 215301.	2.1	3

Classical signal model reproducing quantum probabilities for single and coincidence detections.Journal of Physics: Conference Series, 2012, 361, 012030.
3
182 Vaì xjoì interpretation of wave function: 2012. , 2012, , .

183 Ergodicity of dynamical systems on 2-adic spheres. Doklady Mathematics, 2012, 86, 843-845. 0.6

New experimental tests of the photonâ $€^{\mathrm{TM}}$ s indivisibility. Journal of Russian Laser Research, 2012, 33,
247-254.
0.6

3

185 \begin{tabular}{l}
Quantum-like model of diauxie in Escherichia coli: Operational description of precultivation effect.

Journal of Theoretical Biology, 2012, 314, 130-137.

\quad

Quantum Correlations as Correlations of Classical Gaussian Signals: â€œEntanglementâ€ 0 at the
\end{tabular}$\quad 0.8$

188 Towards new Grangier type experiments. Annals of Physics, 2012, 327, 1786-1802.
2.8

Quantum-like generalization of the Bayesian updating scheme for objective and subjective mental
uncertainties. Journal of Mathematical Psychology, 2012, 56, 166-175.

Decompositions of Gelfandâ€"Shilov kernels into kernels of similar class. Journal of Mathematical
1.0

21

Quantum-like model for the adaptive dynamics of the genetic regulation of E . coliâ $€^{\mathrm{TM}} \mathrm{S}$ metabolism of glucose/lactose. Systems and Synthetic Biology, 2012, 6, 1-7.
$1.0 \quad 37$

ON AN EXPERIMENTAL TEST OF PREQUANTUM THEORY OF CLASSICAL RANDOM FIELDS: AN ESTIMATE FROM
192 ABOVE OF THE COEFFICIENT OF SECOND-ORDER COHERENCE. International Journal of Quantum
1.1

9 Information, 2012, 10, 1241014.

193 Towards modeling of epigenetic evolution with the aid of theory of open quantum systems. , 2012, , .
9

The Financial Heat Machine: Coupling With the Present Financial Crises. Wilmott Magazine, 2012, 2012,
$0.1 \quad 3$ 32-45.

199 Craded tensor products and the problem of tensor grade computation and reduction. P-Adic Numbers,
Adaptive Dynamics and Its Application to Context Dependent Systems Breaking the Classical Probability Law. Lecture Notes in Computer Science, 2012, , 160-171.

201 Beyond Archimedean Space-Time Structure. , 2011, , .
4

202 Dynamics of Entropy in Quantum-like Model of Decision Making. , 2011, , . 3

203 Violation of Bell's Inequality and Postulate on Simultaneous Measurement of Compatible Observables.

Journal of Computational and Theoretical Nanoscience, 2011, 8, 1006-1010.

0.416

204 Prequantum Classical Statistical Field Theory: Fundamentals. , 2011, , .
0

205 Genetic code and deformation of the 2-dimensional 2-adic metric. P-Adic Numbers, Ultrametric
Analysis, and Applications, 2011, 3, 165-168.
$0.4 \quad 7$

206 On topological extensions of Archimedean and non-Archimedean rings. P-Adic Numbers, Ultrametric Analysis, and Applications, 2011, 3, 326-333.

207 Vladimir Sergeevich Anashin. P-Adic Numbers, Ultrametric Analysis, and Applications, 2011, 3, 359-362.
0.4

0

208 Prequantum Classical Statistical Field Theory: SchrÃๆdinger Dynamics of Entangled Systems
asÂaÂClassical Stochastic Process. Foundations of Physics, 2011, 41, 317-329.1.3
538-548.
$209 \quad \begin{aligned} & \text { Quantum } \\ & \\ & 538-548 .\end{aligned}$
1.3

14Quantum-like interference effect in gene expression: glucose-lactose destructive interference.1.029
210 Systems and Synthetic Biology, 2011, 5, 59-68.
Quantum-like model of processing of information in the brain based on classical electromagnetic2.044
211 field. BioSystems, 2011, 105, 250-262.Quantum-like model of brain's functioning: Decision making from decoherence. Journal of Theoretical1.7121
Biology, 2011, 281, 56-64.Subquantum nonlocal correlations induced by the background random field. Physica Scripta, 2011, 84,045014.QUANTUM PROBABILITY FROM CLASSICAL SIGNAL THEORY. International Journal of Quantum1.1
217 Pairwise correlations in a three-partite quantum system from a prequantum random field. Journal ofRussian Laser Research, 2010, 31, 191-200.
0.6 16
218 Classical signal model for quantum channels. Journal of Russian Laser Research, 2010, 31, 462-468. 0.6 29
219 Interplay between classical and quantum signals: partial trace and measurement channels. Journal of Russian Laser Research, 2010, 31, 589-598. $0.6 \quad 0$
Description of Composite Quantum Systems by Means of Classical Random Fields. Foundations of
220 Physics, 2010, 40, 1051-1064.1.320
Subquantum detection theoryâ€"SDT. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 2.7 17
221 287-292.
Two Versions of the Projection Postulate: From EPR Argument to One-Way Quantum Computing and
222 Teleportation. Advances in Mathematical Physics, 2010, 2010, 1-11. $0.8 \quad 2$
1.5
QUANTUM CORRELATIONS FROM CLASSICAL GAUSSIAN RANDOM VARIABLES: FUNDAMENTAL ROLE OF 223 VACUUM NOISE. Fluctuation and Noise Letters, 2010, 09, 331-341. 41.110Quantum correlations and dynamics from classical random fields valued in complex Hilbert spaces.Journal of Mathematical Physics, 2010, 51, 082106.
An analogue of the Heisenberg uncertainty relation in prequantum classical field theory. Physica
225 Scripta, 2010, 81, 065001.
235 On uniqueness of Gibbs measure for -adic countable state Potts model on the Cayley tree. Nonlinear

 Analysis: Theory, Methods \& Applications, 2009, 71, 5327-5331.
 Fractal fluctuations and quantum-like chaos in the brain by analysis of variability of brain waves: A new method based on a fractal variance function and random matrix theory: A link with El Naschie fractal Cantorian spaceâ€"time and V. Weiss and H. Weiss golden ratio in brain. Chaos, Solitons and
243 Einstein-Podolsky-Rosen paradox, Bell's inequality, and the projection postulate. Journal of Russian

```
249 Contextual Probabilistic Analysis of Bell's Inequality: Nonlocality, "Death of Reality" or
253 Bell-Boole Inequality: Nonlocality or Probabilistic Incompatibility of Random Variables?. Entropy,
\(2.2 \quad 56\)
2008, 10, 19-32.
A Preliminary Experimental Verification On the Possibility of Bell Inequality Violation in Mental
257 P-adic Dynamical Representation of Gene Expression. AIP Conference Proceedings, 2007, , . ..... \(0.4 \quad 2\)258 A Mathematicianâ \(€^{T M}\) s Viewpoint to Bellâ \(€^{T M}\) s theorem: In Memory of Walter Philipp. AlP ConferenceProceedings, 2007, , .

To quantum averages through asymptotic expansion of classical averages on infinite-dimensional space. Journal of Mathematical Physics, 2007, 48, 013512.
261 Quantum mechanics as an approximation of statistical mechanics for classical fields. Reports on0.86
262 Linear fraction P-Adic and adelic dynamical systems. Reports on Mathematical Physics, 2007, 60, 55-68. ..... 0.8 ..... 20
263 Prequantum Classical Statistical Field Theoryâ€"PCSFT. AIP Conference Proceedings, 2007, , . 0.4 ..... 3Some remarks on an experiment suggesting quantum-like behavior of cognitive entities and264 formulation of an abstract quantum mechanical formalism to describe cognitive entity and its5.192dynamics. Chaos, Solitons and Fractals, 2007, 31, 1076-1088.
265 Can Quantum Information be Processed by Macroscopic Systems?. Quantum Information Processing, 2.2 ..... 19
2007, 6, 401-429.Analysis of explicit and implicit assumptions in the theorems of J. Von Neumann and J. Bell. Journal of
267 Quantum-like brain: â€œInterference of mindsâ€: BioSystems, 2006, 84, 225-241. ..... 119
Nonlinear SchrÃ̃dinger equations from prequantum classical statistical field theory. Physics Letters, ..... 2.1 ..... 75
271. Representation Theorem of Observables on a Quantum System. International Journal of Theoretical ..... 1.2 ..... 17
Physics, 2006, 45, 469-482.Symplectic geometry on the Hilbert phase space and foundations of quantum mechanics. AIPPhysics, 2005, 35, 1655-1693.
\(277 \quad \begin{aligned} & \text { Generalizations of Quantum Mecha } \\ & \text { Physics Letters, 2005, 18, 637-650. }\end{aligned}\) 0.6 ..... 59
278 Contextual Quantization and the Principle of Complementarity of Probabilities. Open Systems andInformation Dynamics, 2005, 12, 303-318.
279 Kolmogorov Probability Spaces Describing Accardi Models of Quantum Correlations. Open Systems 279 and Information Dynamics, 2005, 12, 371-384.
280 A pre-quantum classical statistical model with infinite-dimensional phase space. Journal of Physics A,2005, 38, 9051-9073.
281 Reconstruction of quantum theory on the basis of the formula of total probability. AIP Conference0.410
282 TO QUANTUM MECHANICS THROUGH PROJECTION OF CLASSICAL STATISTICAL MECHANICS ON PRESPACE. , ..... 0 2005, , .
1.1 ..... 25
283 Contextual approach to quantum mechanicsOn Quantum-Like Probabilistic Structure of Mental Information. Open Systems and Information1.282

289 Discrete time dynamical models and their quantum-like context-dependent properties. Journal of
Modern Optics, 2004, 51, 1113-1114.

Discrete time dynamical models and their quantum-like context-dependent properties. Journal of Modern Optics, 2004, 51, 1113-1114.

Behaviour of Hensel perturbations of p-adic monomial dynamical systems. Analysis Mathematica, 2003, 29, 107-133.

Hyperbolic quantum mechanics. Advances in Applied Clifford Algebras, 2003, 13, 1-9.
1.0

Representation of the Kolmogorov model having all distinguishing features of quantum probabilistic model. Physics Letters, Section A: General, Atomic and Solid State Physics, 2003, 316, 279-296.
p-Adic interpolation and approximation of a continuous function by linear combinations of shifts of p-adic valuations. Journal of Approximation Theory, 2003, 120, 124-135.

295 Quantum-like formalism for cognitive measurements. BioSystems, 2003, 70, 211-233.
2.0

Noncommutative probability in classical disordered systems. Physica A: Statistical Mechanics and Its Applications, 2003, 326, 456-463.

297 Contextual viewpoint to quantum stochastics. Journal of Mathematical Physics, 2003, 44, 2471.

Ensemble fluctuations and the origin of quantum probabilistic rule. Journal of Mathematical Physics, 2002, 43, 789-802.

299 Frequency Analysis of the EPR-Bell Argumentation. Foundations of Physics, 2002, 32, 1159-1174.

Limit behaviour of sums of independent random variables with respect to the uniform p-adic distribution. Statistics and Probability Letters, 2001, 51, 269-276.

Contextualist viewpoint to Greenbergerâ€"Horneâ€"Zeilinger paradox. Physics Letters, Section A:
General, Atomic and Solid State Physics, 2001, 278, 307-314.

302 On the Number of Cycles of p-adic Dynamical Systems. Journal of Number Theory, 2001, 90, 255-264.
0.4

31

303 Small denominators in complex p-adic dynamics. Indagationes Mathematicae, 2001, 12, 177-189.
0.4

11

304 ON ERGODIC BEHAVIOR OF p-ADIC DYNAMICAL SYSTEMS. Infinite Dimensional Analysis, Quantum
Probability and Related Topics, 2001, 04, 569-577.

Linear representations of probabilistic transformations induced by context transitions. Journal of
1.6

\footnotetext{
305 Physics A, 2001, 34, 9965-9981.
}

308 Non-Kolmogorov probability models and modified Bellâ \({ }^{\mathrm{TM}}\) s inequality. Journal of Mathematical Physics, 2000, 41, 1768-1777.
309 A perturbation of CHSH inequality induced by fluctuations of ensemble distributions. Journal of

310 Memory retrieval as a p-adic dynamical system. BioSystems, 1999, 49, 105-115.
\(2.0 \quad 72\)


314 Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models. , 1997, , .
289
Non-Archimedean probability: Frequency and axiomatics theories. Acta Mathematicae Applicatae Sinica, 315 1996, 12, 78-92.

316 p-Adic Valued Distributions in Mathematical Physics. , 1994, , .

The triple-store experiment: a first simultaneous test of classical and quantum probabilities in choice over menus. Theory and Decision, 0, , 1 .```

