Andrei Khrennikov

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/7112483/publications.pdf
Version: 2024-02-01

1 Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models. , 1997, , .
289

2 p-Adic Valued Distributions in Mathematical Physics., 1994, , .
262

3 Contextual Approach to Quantum Formalism. , 2009, , .
201

Quantum-like model of brain's functioning: Decision making from decoherence. Journal of Theoretical Biology, 2011, 281, 56-64.

Quantum-like brain: â€œInterference of mindsâ€: BioSystems, 2006, 84, 225-241.
2.0

119

6 Quantum Models for Psychological Measurements: An Unsolved Problem. PLoS ONE, 2014, 9, el10909.
2.5

93

Some remarks on an experiment suggesting quantum-like behavior of cognitive entities and
$7 \quad$ formulation of an abstract quantum mechanical formalism to describe cognitive entity and its
dynamics. Chaos, Solitons and Fractals, 2007, 31, 1076-1088.

8 Human Subconscious as ap-adic Dynamical System. Journal of Theoretical Biology, 1998, 193, 179-196.
1.7

86

9 On Quantum-Like Probabilistic Structure of Mental Information. Open Systems and Information
Dynamics, 2004, 11, 267-275.

A pre-quantum classical statistical model with infinite-dimensional phase space. Journal of Physics A, 2005, 38, 9051-9073.
1.6

78

Quantum-like model of cognitive decision making and information processing. BioSystems, 2009, 95,
179-187.
p-Adic mathematical physics: the first 30 years. P-Adic Numbers, Ultrametric Analysis, and Applications, 2017, 9, 87-121.
0.4

77

An Application of the Theory of Open Quantum Systems to Model the Dynamics of Party Governance in
the US Political System. International Journal of Theoretical Physics, 2014, 53, 1346-1360.

Nonlinear SchrÃ厅dinger equations from prequantum classical statistical field theory. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 357, 171-176.
2.1

75

15 Memory retrieval as a p-adic dynamical system. BioSystems, 1999, 49, 105-115.
2.0

72

Linear representations of probabilistic transformations induced by context transitions. Journal of Physics A, 2001, 34, 9965-9981.

The Principle of Supplementarity: A Contextual Probabilistic Viewpoint to Complementarity, the
17 Interference of Probabilities and Incompatibility of Variables in Quantum Mechanics. Foundations of
1.3
1.6

71

Physics, 2005, 35, 1655-1693.

Quantum-like dynamics of decision-making. Physica A: Statistical Mechanics and Its Applications, 2012,
391, 2083-2099.

```
19 Quantum-Like Model for Decision Making Process inÂTwo Players Game. Foundations of Physics, 2011, 41,
538-548.
```

Generalizations of Quantum Mechanics Induced by Classical Statistical Field Theory. Foundations of Physics Letters, 2005, 18, 637-650.
0.6

59
21 Quantum Adaptivity in Biology: From Genetics to Cognition. , 2015, , .
Violation of contextual generalization of the Leggettâ $€$ "Garg inequality for recognition of ambiguous
25 A Preliminary Experimental Verification On the Possibility of Bell Inequality Violation in Mental 0.2
States. NeuroQuantology, 2008, 6, 51
Quantum Information Biology: From Information Interpretation of Quantum Mechanics to Applications in Molecular Biology and Cognitive Psychology. Foundations of Physics, 2015, 45, 1.3 50
Quantum Markov Model for Data from Shafir-Tversky Experiments in Cognitive Psychology. Open 1.2
Systems and Information Dynamics, 2009, 16, 371-385. 1.3 46
CHSH Inequality: Quantum Probabilities as Classical Conditional Probabilities. Foundations of Physics, 2015, 45, 711-725.
1.7
1.7 45 45
of Theoretical Biology, 1999, 197, 451-467.2.044Quantum-like model of processing of information in the brain based on classical electromagneticfield. BioSystems, 2011, 105, 250-262.
Reality Without Realism: On the Ontological and Epistemological Architecture of Quantum1.344Mechanics. Foundations of Physics, 2015, 45, 1269-1300.A quantum-like model of selection behavior. Journal of Mathematical Psychology, 2017, 78, 2-12.1.844
Quantum probability in decision making from quantum information representation of neuronal 3.3 43
33 states. Scientific Reports, $2018,8,16225$.
2.2 43
Classical (Local and Contextual) Probability Model for Bohmâ€"Bell Type Experiments: No-Signaling as

Nontrivial quantum and quantum-like effects in biosystems: Unsolved questions and paradoxes.
Progress in Biophysics and Molecular Biology, 2015, 119, 137-161.

Quantum Bayesianism as the basis of general theory of decision-making. Philosophical Transactions
Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150245.
3.4
T-functions revisited: new criteria for bijectivity/transitivity. Designs, Codes, and Cryptography, 2014,
$71,383-407$.
. 636

48 Modeling Fluidâ $€^{\mathrm{TM}}$ S Dynamics with Master Equations in Ultrametric Spaces Representing the Treelike
$2.2 \quad 36$ Structure of Capillary Networks. Entropy, 2016, 18, 249.

36
\square49 Frequency Analysis of the EPR-Bell Argumentation. Foundations of Physics, 2002, 32, 1159-1174.
1.3

35

50 Non-Kolmogorovian Approach to the Context-Dependent Systems Breaking the Classical Probability Law. Foundations of Physics, 2013, 43, 895-911.
1.3

35

ON ERGODIC BEHAVIOR OF p-ADIC DYNAMICAL SYSTEMS. Infinite Dimensional Analysis, Quantum
Probability and Related Topics, 2001, 04, 569-577.
0.5

34

Born's rule from classical random fields. Physics Letters, Section A: General, Atomic and Solid State
$57 \quad \begin{aligned} & \text { Quantum Versus Classical Entang } \\ & \text { of Physics, 2020, 50, 1762-1780. }\end{aligned}$

1.3

58 Criteria of measure-preserving for p-adic dynamical systems in terms of the van der Put basis. Journal

Quantum field inspired model of decision making: Asymptotic stabilization of belief state via
60 interaction with surrounding mental environment. Journal of Mathematical Psychology, 2018, 82,
1.8

32
159-168.
61 A perturbation of CHSH inequality induced by fluctuations of ensemble distributions. Journal of
Mathematical Physics, 2000, 41, 5934-5944.
1.1

31

62 On the Number of Cycles of p-adic Dynamical Systems. Journal of Number Theory, 2001, 90, 255-264.
0.4

31
63 Quantum like modeling of decision making: Quantifying uncertainty with the aid of
63 Heisenbergấ " $^{\text {Robertson inequality. Journal of Mathematical Psychology, 2018, 84, 49-56. }}$
64 Two Faced Janus of Quantum Nonlocality. Entropy, 2020, 22, 303.
Probabilistic pathway representation of cognitive information. Journal of Theoretical Biology, 2004,
231,597-613.
231, 597-613.
2.2

31
$1.7 \quad 30$

Quantum Model for Psychological Measurements: From the Projection Postulate to Interference of
Mental Observables Represented As Positive Operator Valued Measures. NeuroQuantology, 2014, 12, .
0.2

30

67 Towards Information Lasers. Entropy, 2015, 17, 6969-6994.
2.2

30

68 Classical and quantum dynamics on p-adic trees of ideas. BioSystems, 2000, 56, 95-120.
2.0

29

> Ensemble fluctuations and the origin of quantum probabilistic rule. Journal of Mathematical Physics, $2002,43,789-802$.
1.1

29

70 Classical signal model for quantum channels. Journal of Russian Laser Research, 2010, 31, 462-468.

73	Applying quantum principles to psychology. Physica Scripta, 2014, T163, 014007.	
74	A model of adaptive decision-making from representation of information environment by quantum fields. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 20170162.	2.5
75	Bohr against Bell: complementarity versus nonlocality. Open Physics, 2017, 15, 734-738.	

76 Quantum-like model of subjective expected utility. Journal of Mathematical Economics, 2018, 78,

83	Statistical and subjective interpretations of probability in quantum-like models of cognition and decision making. Journal of Mathematical Psychology, 2016, 74, 82-91.	1.8	24
84	Application of Theory of Quantum Instruments to Psychology: Combination of Question Order Effect with Response Replicability Effect. Entropy, 2020, 22, 37.	2.2	24
85	Contextualist viewpoint to Greenbergerâ $€$ "Horneâ€"Zeilinger paradox. Physics Letters, Section A: General, Atomic and Solid State Physics, 2001, 278, 307-314.	2.1	23
86	Fractal fluctuations and quantum-like chaos in the brain by analysis of variability of brain waves: A new method based on a fractal variance function and random matrix theory: A link with El Naschie fractal Cantorian spaceấ "time and V. Weiss and H. Weiss golden ratio in brain. Chaos, Solitons and Fractals, 2009, 41, 2790-2800.	5.1	23
87	$\hat{a} €^{\sim}$ Social Laserâ $€^{T M}$: action amplification by stimulated emission of social energy. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150094.	3.4	23
88	Quantum version of Aumannâ $€^{\mathrm{TM}}$ s approach to common knowledge: Sufficient conditions of impossibility to agree on disagree. Journal of Mathematical Economics, 2015, 60, 89-104.	0.8	22
89	Decompositions of Gelfandâ€"Shilov kernels into kernels of similar class. Journal of Mathematical Analysis and Applications, 2012, 396, 315-322.	1.0	21
90	Adelic Multiresolution Analysis, Construction of Wavelet Bases and Pseudo-Differential Operators. Journal of Fourier Analysis and Applications, 2013, 19, 1323-1358.	1.0	21

Modeling combination of question order effect, response replicability effect, and QQ-equality with
A model of differentiation in quantum bioinformatics. Progress in Biophysics and Molecular Biology,
$2017,130,88-98$.

94 Attractors of random dynamical systems over p-adic numbers and a model of â $€^{\sim}$ noisyâ $€^{\text {TM }}$ cognitive97 Can Quantum Information be Processed by Macroscopic Systems?. Quantum Information Processing,2007, 6, 401-429.

On the equivalence of the Clauserâ $€$ "Horne and Eberhard inequality based tests. Physica Scripta, 2014,

T163, 014019.
2.599 On the Possibility to Combine the Order Effect with Sequential Reproducibility for Quantum99 Measurements. Foundations of Physics, 2015, 45, 1379-1393.
105 Bell argument: Locality or realism? Time to make the choice. , 2012, , 17106 Quantum epistemology from subquantum ontology: Quantum mechanics from theory of classical

Criteria of ergodicity for p -adic dynamical systems in terms of coordinate functions. Chaos, Solitons

111 Social laser model: from color revolutions to Brexit and election of Donald Trump. Kybernetes, 2018, 47, 273-288.
2.

112 Is the Devil in h?. Entropy, 2021, 23, 632.
2.2

16

Representation of the Universe as a Dendrogramic Hologram Endowed with Relational Interpretation.
Entropy, 2021, 23, 584.
$2.2 \quad 16$

Hysteresis model of unconscious-conscious interconnection: Exploring dynamics on m-adic trees.
P-Adic Numbers, Ultrametric Analysis, and Applications, 2015, 7, 312-321.
0.4

15
115 A Quantum-Like Model of Information Processing in the Brain. Applied Sciences (Switzerland), 2020, 10,
707.
2.5
15

116 Information overload for (bounded) rational agents. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20202957.
2.6
117 Single, Complete, Probability Spaces Consistent With EPR-Bohm-Bell Experimental Data. , 2009, , 14
118 Prequantum Classical Statistical Field Theory: SchrÃ \mathbb{T} dinger Dynamics of Entangled SystemsasÂâ̂classical Stochastic Process. Foundations of Physics, 2011, 41, 317-329.
Solvability of the p-adic Analogue of Navierâ€"Stokes Equation via the Wavelet Theory. Entropy, 2019, 21,
$119 \quad 1129$.
2.2 140.613Analysis of explicit and implicit assumptions in the theorems of J. Von Neumann and J. Bell. Journal ofRussian Laser Research, 2007, 28, 244-254.
1.1 13
The role of von Neumann and $L \tilde{A} 1 / 4$ ders postulates in the Einstein, Podolsky, and Rosen considerations:121 Comparing measurements with degenerate and nondegenerate spectra. Journal of Mathematical
Physics, 2008, 49, 052102.Detection Model Based on Representation of Quantum Particles by Classical Random Fields: Bornâ€ TM_{S}1.313Rule and Beyond. Foundations of Physics, 2009, 39, 997-1022.An analogue of the Heisenberg uncertainty relation in prequantum classical field theory. Physica2.513Scripta, 2010, 81, 065001.QUANTUM PROBABILITY FROM CLASSICAL SIGNAL THEORY. International Journal of Quantum1.113
Information, 2011, 09, 281-292.Born's rule from measurements of classical signals by threshold detectors which are properlycalibrated. Journal of Modern Optics, 2012, 59, 667-678.
Quantum postulate vs. quantum nonlocality: on the role of the Planck constant in Bellâ $€^{\mathrm{TM}}$ s argument.
Quantum postulate vs. quantum nonlocality: on the role of the Planck constant in Bellâ $€^{\mathrm{TM}}$ s argument.
Quantum postulate vs. quantum nonlocality: on the role of the Planck constant in Bellâ $€^{\mathrm{TM}}$ s argument. 1.3
131 Foundations of Physics, 2021, 51, 1.
131 Foundations of Physics, 2021, 51, 1.
131 Foundations of Physics, 2021, 51, 1. 13
132 ORIGIN OF QUANTUM PROBABILITIES. , 2001, , .
132 ORIGIN OF QUANTUM PROBABILITIES. , 2001, , .
132 ORIGIN OF QUANTUM PROBABILITIES. , 2001, , 13 2.7 2.7 12 12 2.5 12

Interference of probabilities in the classical probabilistic framework. Fuzzy Sets and Systems, 2005,

Interference of probabilities in the classical probabilistic framework. Fuzzy Sets and Systems, 2005,

Interference of probabilities in the classical probabilistic framework. Fuzzy Sets and Systems, 2005,

Interference of probabilities in the classical probabilistic framework. Fuzzy Sets and Systems, 2005,

Interference of probabilities in the classical probabilistic framework. Fuzzy Sets and Systems, 2005,

Interference of probabilities in the classical probabilistic framework. Fuzzy Sets and Systems, 2005, $\begin{array}{ll} & \text { Interference } \\ 133 \\ & 155,4-17 .\end{array}$ $\begin{array}{ll} & \text { Interference } \\ 133 \\ & 155,4-17 .\end{array}$ $\begin{array}{ll} & \text { Interference } \\ 133 \\ & 155,4-17 .\end{array}$ $\begin{array}{ll} & \text { Interference } \\ 133 \\ & 155,4-17 .\end{array}$ $\begin{array}{ll} & \text { Interference } \\ 133 \\ & 155,4-17 .\end{array}$ $\begin{array}{ll} & \text { Interference } \\ 133 \\ & 155,4-17 .\end{array}$

134 Violation of Bellâ $€^{T M}$ s Inequality and non-Kolmogorovness. , 2009, , .

134 Violation of Bellâ $€^{T M}$ s Inequality and non-Kolmogorovness. , 2009, , .

134 Violation of Bellâ $€^{T M}$ s Inequality and non-Kolmogorovness. , 2009, , .

135

135

135 Quantum non-objectivity from performativity of quantum phenomena. Physica Scripta, 2014, T163, Quantum non-objectivity from performativity of quantum phenomena. Physica Scripta, 2014, T163, Quantum non-objectivity from performativity of quantum phenomena. Physica Scripta, 2014, T163,

14020.
14021.
14022.

136 Small denominators in complex p-adic dynamics. Indagationes Mathematicae, 2001, 12, 177-189.
136 Small denominators in complex p-adic dynamics. Indagationes Mathematicae, 2001, 12, 177-189.
136 Small denominators in complex p-adic dynamics. Indagationes Mathematicae, 2001, 12, 177-189. 0.4 11
137 Kolmogorov Probability Spaces Describing Accardi Models of Quantum Correlations. Open Systems
137 Kolmogorov Probability Spaces Describing Accardi Models of Quantum Correlations. Open Systems
137 Kolmogorov Probability Spaces Describing Accardi Models of Quantum Correlations. Open Systems
137 Kolmogorov Probability Spaces Describing Accardi Models of Quantum Correlations. Open Systems and Information Dynamics, 2005, 12, 371-384. 1.2 1.2 11 11 ?
-
145 EEG p-adic quantum potential accurately identifies depression, schizophrenia and cognitive decline. 2.5 11
PLoS ONE, 2021, 16, e0255529.Quantum-like model for unconsciousâ€"conscious interaction and emotional coloring of perceptions2.011
and other conscious experiences. BioSystems, 2021, 208, 104471.
0.4 10147 Reconstruction of quantum theory on the basis of the formula of total probability. AIP Conference
Proceedings, 2005, , .
1.1 10
Quantum correlations and dynamics from classical random fields valued in complex Hilbert spaces.
148 Journal of Mathematical Physics, 2010, 51, 082106.
1.2 10
149 Quantum-Like Tunnelling and Levels of Arbitrage. International Journal of Theoretical Physics, 2013,
52, 4083-4099.1.2Bell Could Become the Copernicus of Probability. Open Systems and Information Dynamics, 2016, 23,1650008.Automaton model of protein: Dynamics of conformational and functional states. Progress inAutomaton model of protein: Dynamics of conforma
Biophysics and Molecular Biology, 2017, 130, 2-14.2.910Mechanisms of directed evolution of morphological structures and the problems of morphogenesis.BioSystems, 2018, 168, 26-44.153 Towards Experiments to Test Violation of the Original Bell Inequality. Entropy, 2018, 20, 280.2.2
155 On the Physical Basis of Theory of â€œMental Wavesâ€: NeuroQuantology, 2010, 8, 0.2 10Behaviour of Hensel perturbations of p-adic monomial dynamical systems. Analysis Mathematica, 2003,
$0.5 \quad 9$
29, 107-133.
2.6 9157 Financial heat machine. Physica A: Statistical Mechanics and Its Applications, 2005, 350, 487-490.Quantum correlations from classical Gaussian correlations. Journal of Russian Laser Research, 2009,30, 472-479.

A macroscopic violation of no-signaling in time inequalities? How to test temporal entanglement with behavioral observables. Frontiers in Psychology, 2015, 6, 1061.
2.19

9
165 Preface of the Special Issue Probing the Limits of Quantum Mechanics: Theory and Experiment, Volume
165 1. Foundations of Physics, 2015, 45, 707-710.
$1.3 \quad 9$

Randomness: Quantum versus classical. International Journal of Quantum Information, 2016, 14,
$1.1 \quad 9$
$166 \quad 1640009$.
167 The Present Situation in Quantum Theory and its Merging with General Relativity. Foundations of 1.3168 Social Laser Model for the Bandwagon Effect: Generation of Coherent Information Waves. Entropy,2020, 22, 559.$2.2 \quad 9$

Discrete time dynamical models and their quantum-like context-dependent properties. Journal of		1.3
169		
Modern Optics, 2004, 51, 1113-1114.		

VON NEUMANN AND LUDERS POSTULATES AND QUANTUM INFORMATION THEORY. International Journal of Quantum Information, 2009, 07, 1303-1311.
p-Adic physics, non-well-founded reality and unconventional computing. P-Adic Numbers, Ultrametric Analysis, and Applications, 2009, 1, 297-306.
$0.4 \quad 8$
174 Quantum-like dynamics of decision-making in prisoner's dilemma game., 2012, , .8
175 Two-slit experiment: quantum and classical probabilities. Physica Scripta, 2015, 90, 074017. 2.5 8Preface of the special issue quantum foundations: information approach. Philosophical TransactionsSeries A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150244.

On the topological structure of a mathematical model of human unconscious. P-Adic Numbers,
Ultrametric Analysis, and Applications, 2017, 9, 78-81.
$\begin{array}{ll}0.4 & 8\end{array}$
Evaluating the Maximal Violation of the Original Bell Inequality by Two-Qudit States Exhibiting2.2

Psychological â€ $Є^{\sim}$ double-slit experimentâ $€^{T M}$ in decision making: Quantum versus classical. BioSystems, 2020,
195,104171 .

Noncommutative probability in classical disordered systems. Physica A: Statistical Mechanics and Its Applications, 2003, 326, 456-463.
2.6

EPR-Bohm Experiment and Interference of Probabilities. Foundations of Physics Letters, 2004, 17, 691-700.

Algorithm for Quantum-like Representation: Transformation of Probabilistic Data into Vectors on Bloch's Sphere. Open Systems and Information Dynamics, 2008, 15, 223-230.

EPR "PARADOX", PROJECTION POSTULATE, TIME SYNCHRONIZATION "NONLOCALITY". International Journal
of Quantum Information, 2009, 07, 71-81.

Genetic code and deformation of the 2-dimensional 2-adic metric. P-Adic Numbers, Ultrametric
186 Analysis, and Applications, 2011, 3, 165-168.
$0.4 \quad 7$

Subquantum nonlocal correlations induced by the background random field. Physica Scripta, 2011, 84,
045014.

188 Towards a Field Model of Prequantum Reality. Foundations of Physics, 2012, 42, 725-741.

Three-body system metaphor for the two-slit experiment and Escherichia coli lactoseâ€"glucose
189 metabolism. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150243.

190 Quantum formalism as an optimisation procedure of information flows for physical and biological systems. BioSystems, 2016, 150, 13-21.
2.0

7

Energy and information flows in biological systems: Bioenergy transduction of V 1 -ATPase rotary
191 motor and dynamics of thermodynamic entropy in information flows. Progress in Biophysics and Molecular Biology, 2017, 130, 33-38.

192 Molecular recognition of the environment and mechanisms of the origin of species in quantum-like modeling of evolution. Progress in Biophysics and Molecular Biology, 2017, 130, 61-79.

193 Towards Better Understanding QBism. Foundations of Science, 2018, 23, 181-195.
$0.7 \quad 7$

Classical versus quantum probability: Comments on the paper â€œOn universality of classical probability
194 with contextually labeled random variablesâ€•by E. Dzhafarov and M. Kon. Journal of Mathematical
1.8

Psychology, 2019, 89, 87-92.
195 Quantum analog of the original Bell inequality for two-qudit states with perfect
correlations/anticorrelations. Journal of Physics A: Mathematical and Theoretical, 2019, 52, 435304.
$2.1 \quad 7$

196 Ambivalence in decision making: An eye tracking study. Cognitive Psychology, 2022, 134, 101464.
2.2

7

[^0]1.2

6
199 Quantum mechanics as an approximation of statistical mechanics for classical fields. Reports on Mathematical Physics, 2007, 60, 453-484.
0.8

6

200 Quantum-like model for classical random electromagnetic field. Journal of Modern Optics, 2008, 55,

201 Towards a Resolution of Dilemma: Nonlocality or Nonobjectivity?. International Journal of
Theoretical Physics, 2012, 51, 2488-2502.

Photon Flux and Distance from the Source: Consequences for Quantum Communication. Foundations
1.3

6
202 of Physics, 2014, 44, 389-405.

203 Decision-Making and Cognition Modeling from the Theory of Mental Instruments. , 2017, , 75-93.

P-Adic Analog of Navierâ $€^{\prime \prime}$ Stokes Equations: Dynamics of Fluidâ€ ${ }^{T M}$ s Flow in Percolation Networks (from) Tj ETQqO 00 rgBT /Overlock 2017, 19, 161.

205 State Entropy and Differentiation Phenomenon. Entropy, 2018, 20, 394.
2.2

6

206 Quantum Probability and Randomness. Entropy, 2019, 21, 35.
2.2

6207 Order stability via FrÃๆhlich condensation in bio, eco, and social systems: The quantum-like approach.207 BioSystems, 2022, 212, 104593.
$2.0 \quad 6$
208 Towards Unification of General Relativity and Quantum Theory: Dendrogram Representation of theEvent-Universe. Entropy, 2022, 24, 181.
$2.2 \quad 6$
Nonclassical total probability formula and quantum interference of probabilities. Statistics and209 Probability Letters, 2004, 70, 49-58.
0.7 5
210 Energy Levels of "Hydrogen Atom" in Discrete Time Dynamics. Open Systems and Information Dynamics, 1.2 5
2006, 13, 119-132.
0.6 5 5Einstein-Podolsky-Rosen paradox, Bell's inequality, and the projection postulate. Journal of Russian
211 Laser Research, 2008, 29, 101-113.$1.0 \quad 5$Representation of Probabilistic Data by Quantum-Like Hyperbolic Amplitudes. Advances in AppliedClifford Algebras, 2010, 20, 43-56.
213 Preface: Foundations of Probability and Physics - 6. AIP Conference Proceedings, 2012, , 0.4 5Hierarchical model of the actomyosin molecular motor based on ultrametric diffusion with drift.

217	Dendrogramic Representation of Data: CHSH Violation vs. Nonergodicity. Entropy, 2021, 23, 971.	2.2	5
218	â€œEinstein's Dreamâ€̂̂€" Quantum Mechanics as Theory of Classical Random Fields. Reviews in Theoretical Science, 2013, 1, 34-57.	0.5	5

219 | Limit behaviour of sums of independent random variables with respect to the uniform p-adic |
| :--- |
| distribution. Statistics and Probability Letters, $2001,51,269-276$. |

220 A Mathematicianâ $€^{T M}$ s Viewpoint to Bellâ $\epsilon^{\mathrm{TM}_{s}}$ theorem: In Memory of Walter Philipp. AIP Conference
Proceedings, 2007, .
$0.7 \quad 4$

A Mathematicianâ $€^{T M}$ S Viewpoint to Bellâ ™ $_{\text {s }}$ theorem: In Memory of Walter Philipp. AIP Conference
$0.4 \quad 4$
221 VACUUM NOISE. Fluctuation and Noise Letters, 2010, 09, 331-341. 1.5
223 Observables generalizing positive operator valued measures. AIP Conference Proceedings, 2012, , .
235 Val^xjoì interpretation of wave function: 2012. , 2012, , 3New experimental tests of the photonâ€ T^{TM} s indivisibility. Journal of Russian Laser Research, 2012, 33,

The Financial Heat Machine: Coupling With the Present Financial Crises. Wilmott Magazine, 2012, 2012,

0.1

3
237 32-45.
Outline of a unified Darwinian evolutionary theory for
Biophysics and Molecular Biology, 2017, 130, 80-87.$2.9 \quad 3$
Transport through a network of capillaries from ultrametric diffusion equation with quadraticnonlinearity. Russian Journal of Mathematical Physics, 2017, 24, 505-516.
From axiomatics of quantum probability to modelling geological uncertainty and management of3.43Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170225.p-Adic Analogue of the Wave Equation. Journal of Fourier Analysis and Applications, 2019, 25,2447-2462.
$1.0 \quad 3$
245 The triple-store experiment: a first simultaneous test of classical and quantum probabilities in choice over menus. Theory and Decision, 0, , 1.
1.0 3
$246 \quad \begin{aligned} & \text { Quantum(-Like) Decision } \\ & \text { Science, 2015, , 105-118. }\end{aligned}$$1.3 \quad 3$
0.2 3
What Does Probability Theory Tell Us About Bell's Inequality?. Advanced Science Letters, 2009, 2, 247 488-497.
Against Identification of Contextuality with Violation of the Bell Inequalities: Lessons from Theory of 0.6 3
249 Randomness. Journal of Russian Laser Research, 2022, 43, 48-59. Randomness. Journal of Russian Laser Research, 2022, 43, 48-59.
1.3 3
Adaptive Dynamics and Its Application to Context Dependent Systems Breaking the Classical Probability Law. Lecture Notes in Computer Science, 2012, , 160-171. 248
253 P-adic Dynamical Representation of Gene Expression. AlP Conference Proceedings, 2007, ,. 0.4

$255 \quad$| Two Versions of the Projection Postulate: From EPR Argument to One-Way Quantum Computing and |
| :--- |
| Teleportation. Advances in Mathematical Physics, 2010, 2010, 1-11. |

256 Graded tensor products and the problem of tensor grade computation and reduction. P-Adic Numbers,
257 Unconditional Quantum Correlations do not Violate Bellâ $€^{T M}{ }^{\text {s }}$ Inequality. Foundations of Physics, 2015,
$45,1179-1189$.

Quantum Information Biology: From Theory of Open Quantum Systems to Adaptive Dynamics. Advanced Series on Mathematical Psychology, 2016, , 399-414.
$0.7 \quad 2$
258
$1.3 \quad 2$

Reflections on Zeilingerâ $€^{\text {"B }}$ Brukner Information Interpretation of Quantum Mechanics. Foundations of
Physics, 2016, 46, 836-844.
259 Physics, 2016, 46, 836-844.0.6

2
Emergence of Quantum Mechanics from Theory of Random Fields. Journal of Russian Laser Research, 2017, 38, 9-26.
$261 \quad$ Measures
32

Aims and Scope of the Special Issue, â€œQuantum Foundations: Informational Perspectiveâ€: Foundations
262 of Physics, 2017, 47, 1003-1008.
1.3

2

> On the Solutions of Cauchy Problem for Two Classes of Semi-Linear Pseudo-Differential Equations over p-Adic Field. P-Adic Numbers, Ultrametric Analysis, and Applications, 2018, 10, 322-343.
$0.4 \quad 2$

External Observer Reflections on QBism, Its Possible Modifications, and Novel Applications. STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics \& Health, 2018, , 93-118.
$0.0 \quad 2$

Preface to Special Issue: Quantum Information Revolution: Impact to Foundations. Foundations of Physics, 2020, 50, 1757-1761.

Basics of Quantum Theory for Quantum-Like Modeling Information Retrieval. STEAM-H: Science,
$0.0 \quad 2$
267 Basics of Quantum Theory for Quantum-Like Modeling Information Retrieval

Quantum-Like Representation of Macroscopic Configurations. Lecture Notes in Computer Science, 2009, , 44-58.

```
271 HAS CHSH-INEQUALITY ANY RELATION TO EPR-ARGUMENT?. , 2020, , .
```

Social FrÃテhlich condensation: preserving societal order through sufficiently intensive information pumping. Kybernetes, 2022, 51, 138-155.

273 Dendrographic Hologram Theory: Predictability of Relational Dynamics of the Event Universe and the Emergence of Time Arrow. Symmetry, 2022, 14, 1089.
p-Adic interpolation and approximation of a continuous function by linear combinations of shifts of
p-adic valuations. Journal of Approximation Theory, 2003, 120, 124-135.

276 Non-Kolmogorov probability and its use for constructing a model of human perception process. , 2014, , .279 A HYSTERESIS EFFECT ON OPTICAL ILLUSION AND NON-KOLMOGOROVIAN PROBABILITY THEORY. Lecture279 Notes Series, Institute for Mathematical Sciences, 2017, , 201-213.

[^1]289 Measures and conditioning. Fuzzy Sets and Systems, 2005, 155, 1-3. 2.7 0
290 Contextual Probabilistic Analysis of Bell's Inequality: Nonlocality, "Death of Reality" or 0
Non-Kolmogorovness?. , 2008, , .
Interplay between classical and quantum signals: partial trace and measurement channels. Journal of 0.6 0
291 Russian Laser Research, 2010, 31, 589-598.
292 Prequantum Classical Statistical Field Theory: Fundamentals. , 2011, , .0
293 On topological extensions of Archimedean and non-Archimedean rings. P-Adic Numbers, Ultrametric 0.4 0
Analysis, and Applications, 2011, 3, 326-333.$0.4 \quad 0$
294 Vladimir Sergeevich Anashin. P-Adic Numbers, Ultrametric Analysis, and Applications, 2011, 3, 359-362.1.2
295 Born's Rule from Measurements of Classical Random Signals under the Assumption of Ergodicity at the Subquantum Time Scale. Open Systems and Information Dynamics, 2012, 19, 1250019.
297 In memory of Vladimir M. Shelkovich (1949â€"2013). P-Adic Numbers, Ultrametric Analysis, and
Applications, 2013, 5, 242-245.
2.5 0
The SchrÃๆdingerâ€"Robinson inequality from stochastic analysis on a complex Hilbert space. Physica Scripta, 2013, 87, 038109.
0.40
299 Measurement problem: from De Broglie to theory of classical random fields interacting withthreshold detectors. Journal of Physics: Conference Series, 2013, 442, 012011.
. 4
. 4

300 Quantum social science: a non-mathematical motivation. , 0, , 54-68.0
301 Lamarckian Evolution of Epigenome from Open Quantum Systems and Entanglement. Lecture Notes in 1.3 0
Computer Science, 2014, , 324-334.302 Recursion over partitions. P-Adic Numbers, Ultrametric Analysis, and Applications, 2014, 6, 303-309.
303 Estimation of initial one photon temporal modes in waveguides using the asymptotic radiation zone. Physica Scripta, 2014, T163, 014023. 2.5 0Emerging quantum mechanics: Coefficient of second-order coherence from classical random fields304 interacting with threshold type detectors. International Journal of Quantum Information, 2014, 12,1.11560007.
305 Quantum-State Dynamics as Linear Representation0.60
309 Preface for the special issue, $\hat{\epsilon} \epsilon^{\sim}$ Second quantum revolution: foundational questionsâ $\ell^{T M}$. Philosophical
309 Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160397.

0

310 Editorial. Progress in Biophysics and Molecular Biology, 2017, 130, 1.
0

311	Constraints on quantum information field and â€œhuman gain mediumâ€•making possible functioning of social laser. Journal of Physics: Conference Series, 2017, 880, 012017.	0.4	0
312	A Readerâ T^{TM} S Comment on: $\hat{€} \not \varliminf_{\text {Hysteresis }}$ Model of Unconscious-Conscious Interconnection: Exploring Dynamics on m-Adic Treesâ€: P-Adic Numbers, Ultrametric Analysis, and Applications, 2020, 12, 68-71.	0.4	0
313	TO QUANTUM MECHANICS THROUGH PROJECTION OF CLASSICAL STATISTICAL MECHANICS ON PRESPACE 2005, ,.		0

$314 \begin{aligned} & \text { BELL'S INEQUALITY: REVOLUTION IN QUANTUM PHYSICS OR JUST AN INADEQUATE MATHEMATICAL MODEL?. , } \\ & 2010, . .\end{aligned}$
Adaptive Dynamics and Optical Illusion on SchrÃqderấ $\mathbb{T}^{\mathrm{M} M}$ S Stair. Lecture Notes in Computer Science, 2014, ,
$191-200$.

316 Quantum(-like) Formalization of Common Knowledge: Binmore-Brandenburger Operator Approach. Lecture Notes in Computer Science, 2015, , 93-104.
1.3

0

```
317 The Primes are Everywhere, but Nowhereâ€|. STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics \& Health, 2017, , 155-167.
```

0.0

0

At the Crossroads of Three Seemingly Divergent Approaches to Quantum Mechanics. STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics \& Health, 2018, , 13-21.

[^0]: 197 Contextual Quantization and the Principle of Complementarity of Probabilities. Open Systems and
 Information Dynamics, 2005, 12, 303-318.

[^1]: 287
 Giorgio Parisi: The Nobel Prize in Physics 2021. P-Adic Numbers, Ultrametric Analysis, and Applications, 2022, 14, 81-83.

