Hao Chi Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7112232/publications.pdf

Version: 2024-02-01

147726 168321 3,038 77 31 53 citations h-index g-index papers 79 79 79 1392 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Mode Analyses of Subwavelength Periodic Metallic Structures With Finite Thickness. IEEE Antennas and Wireless Propagation Letters, 2022, 21, 79-83.	2.4	O
2	A 13.5-Gb/s 140-GHz Silicon Redriver Exploiting Metadevices for Short-Range OOK Communications. IEEE Transactions on Microwave Theory and Techniques, 2022, 70, 239-253.	2.9	14
3	A programmable diffractive deep neural network based on a digital-coding metasurface array. Nature Electronics, 2022, 5, 113-122.	13.1	171
4	Gainâ€Associated Nonlinear Phenomenon in Singleâ€Conductor Oddâ€Mode Plasmonic Metamaterials. Laser and Photonics Reviews, 2022, 16, .	4.4	15
5	Spoof surface plasmon photonics. Reviews of Modern Physics, 2022, 94, .	16.4	60
6	Design of compact multipleâ€input and multipleâ€output antenna based on slowâ€wave corrugated strips. IET Microwaves, Antennas and Propagation, 2022, 16, 617-626.	0.7	2
7	Dual-band and dual-polarized programmable metasurface unit with independent channels. Journal Physics D: Applied Physics, 2021, 54, 145109.	1.3	6
8	Spoof surface plasmon polariton beam splitters integrated with broadband rejection filtering function. Journal Physics D: Applied Physics, 2021, 54, 335105.	1.3	14
9	Reconfigurable Parametric Amplifications of Spoof Surface Plasmons. Advanced Science, 2021, 8, e2100795.	5.6	21
10	A Broadband 90° Balun With Low-Phase-Imbalance Performance Based on Periodic Slow Wave Structure. IEEE Transactions on Antennas and Propagation, 2021, 69, 4681-4687.	3.1	5
11	Suppressing High-Power Microwave Pulses Using Spoof Surface Plasmon Polariton Mono-Pulse Antenna. IEEE Transactions on Antennas and Propagation, 2021, 69, 8069-8079.	3.1	12
12	Frequency Splitter with High Isolation Based on Spoof Surface Plasmon Polaritons. , 2021, , .		1
13	Active digital spoof plasmonics. National Science Review, 2020, 7, 261-269.	4.6	59
14	Multiple band-rejection filters in dual-frequency bands based on spoof surface plasmon polaritons. Journal of Optics (United Kingdom), 2020, 22, 015001.	1.0	13
15	Design of Miniaturized Antenna Using Corrugated Microstrip. IEEE Transactions on Antennas and Propagation, 2020, 68, 1918-1924.	3.1	31
16	Programmable Hybrid Circuit Based on Reconfigurable SPP and Spatial Waveguide Modes. Advanced Materials Technologies, 2020, 5, 1900828.	3.0	11
17	A Broadband and High-Efficiency Compact Transition From Microstrip Line to Spoof Surface Plasmon Polaritons. IEEE Microwave and Wireless Components Letters, 2020, 30, 23-26.	2.0	22
18	Design of Compact Circularly Polarized Antenna Using Sunshine-Shaped Slotted Patch. IEEE Transactions on Antennas and Propagation, 2020, 68, 6800-6805.	3.1	11

#	Article	IF	CITATIONS
19	Crosstalk Noise Suppression Between Single and Differential Transmission Lines Using Spoof Surface Plasmon Polaritons. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2020, 10, 1367-1374.	1.4	15
20	A plasmonic route for the integrated wireless communication of subdiffraction-limited signals. Light: Science and Applications, 2020, 9, 113.	7.7	79
21	Compact and Wideband Octuple-Mode Filter Based on Hybrid Substrate Integrated Waveguide and Spoof Localized Surface Plasmon Structure. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67, 2377-2381.	2.2	18
22	Dynamic Controls of Secondâ€Harmonic Generations in Both Forward and Backward Modes Using Reconfigurable Plasmonic Metawaveguide. Advanced Optical Materials, 2020, 8, 1902058.	3.6	29
23	A Dual-Mode UWB Antenna for Pattern Diversity Application. IEEE Transactions on Antennas and Propagation, 2020, 68, 3219-3224.	3.1	19
24	Programmable Multifunctional Device Based on Spoof Surface Plasmon Polaritons. IEEE Transactions on Antennas and Propagation, 2020, 68, 3770-3779.	3.1	29
25	Crosstalk Suppression Based on Mode Mismatch Between Spoof SPP Transmission Line and Microstrip. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2019, 9, 2267-2275.	1.4	34
26	Intensityâ€Dependent Metasurface with Digitally Reconfigurable Distribution of Nonlinearity. Advanced Optical Materials, 2019, 7, 1900792.	3.6	33
27	High-Order Modes Analysis of Complex Plasmonic Surface Using the Field-Network Joint Solution. IEEE Access, 2019, 7, 129734-129740.	2.6	2
28	Planar Spoof SPP Transmission Lines: Applications in Microwave Circuits. IEEE Microwave Magazine, 2019, 20, 73-91.	0.7	38
29	A Wide-Angle Broadband Converter: From Odd-Mode Spoof Surface Plasmon Polaritons to Spatial Waves. IEEE Transactions on Antennas and Propagation, 2019, 67, 7425-7432.	3.1	24
30	Programmable Controls of Multiple Modes of Spoof Surface Plasmon Polaritons to Reach Reconfigurable Plasmonic Devices. Advanced Materials Technologies, 2019, 4, 1800603.	3.0	36
31	Measurement Method of Dispersion Curves for Spoof Surface Plasmon Polaritons. IEEE Transactions on Antennas and Propagation, 2019, 67, 4920-4923.	3.1	18
32	A Novel Low-Crosstalk Driveline Based on Spoof Surface Plasmon Polaritons. IEEE Access, 2019, 7, 30702-30707.	2.6	3
33	Loss Analysis of Plasmonic Metasurfaces Using Field-Network-Joint Method. IEEE Transactions on Antennas and Propagation, 2019, 67, 3521-3526.	3.1	17
34	A Dual-Band Electronic-Scanning Leaky-Wave Antenna Based on a Corrugated Microstrip Line. IEEE Transactions on Antennas and Propagation, 2019, 67, 3433-3438.	3.1	40
35	Crosstalk Noise Characterization Between Spoof SPP Transmission Line and Differential Microstrip Lines., 2019,,.		0
36	Concept, Theory, Design, and Applications of Spoof Surface Plasmon Polaritons at Microwave Frequencies. Advanced Optical Materials, 2019, 7, 1800421.	3.6	148

#	Article	IF	CITATIONS
37	Compact filters with adjustable multi-band rejections based on spoof surface plasmon polaritons. Journal Physics D: Applied Physics, 2019, 52, 025107.	1.3	29
38	A novel spoof surface plasmon polariton structure to reach ultra-strong field confinements. Opto-Electronic Advances, 2019, 2, 19000101-19000107.	6.4	25
39	A Spoof Surface Plasmon Transmission Line Loaded with Varactors and Shortâ€Circuit Stubs and Its Application in Wilkinson Power Dividers. Advanced Materials Technologies, 2018, 3, 1800046.	3.0	39
40	Pass-band reconfigurable spoof surface plasmon polaritons. Journal of Physics Condensed Matter, 2018, 30, 134004.	0.7	42
41	Negative reflection and negative surface wave conversion from obliquely incident electromagnetic waves. Light: Science and Applications, 2018, 7, 18008-18008.	7.7	53
42	Dispersion Analysis of Deep-Subwavelength-Decorated Metallic Surface Using Field-Network Joint Solution. IEEE Transactions on Antennas and Propagation, 2018, 66, 2923-2933.	3.1	25
43	Shielding Spoof Surface Plasmon Polariton Transmission Lines Using Dielectric Box. IEEE Microwave and Wireless Components Letters, 2018, 28, 1077-1079.	2.0	8
44	Polymorphic impedance matching technique for MEMS phase shifter., 2018,,.		0
45	Dispersion and Loss of Complex Structured Plasmonic Surface. , 2018, , .		0
46	A general method for extending a lossy network to a lossless network using the matrix decomposition. , 2018, , .		1
47	Microwave plasmonic waveguides and devices. , 2018, , .		0
48	Frequency-Fixed Beam-Scanning Leaky-Wave Antenna Using Electronically Controllable Corrugated Microstrip Line. IEEE Transactions on Antennas and Propagation, 2018, 66, 4449-4457.	3.1	114
49	Diffraction radiation based on an anti-symmetry structure of spoof surface-plasmon waveguide. Applied Physics Letters, 2017, 110, .	1.5	19
50	Reduction of radiation loss at small-radius bend using spoof surface plasmon polariton transmission line. Scientific Reports, 2017, 7, 41077.	1.6	26
51	Reduction of Shielding-Box Volume Using SPP-Like Transmission Lines. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2017, 7, 1486-1492.	1.4	25
52	An ultra-compact rejection filter based on spoof surface plasmon polaritons. Scientific Reports, 2017, 7, 10576.	1.6	38
53	A Multi-Layer Spoof Surface Plasmon Polariton Waveguide With Corrugated Ground. IEEE Access, 2017, 5, 25306-25311.	2.6	14
54	Multilayer Transmissions of Spoof Surface Plasmon Polaritons for Multifunctional Applications. Advanced Materials Technologies, 2017, 2, 1600159.	3.0	23

#	Article	IF	Citations
55	Realâ€Time Controls of Designer Surface Plasmon Polaritons Using Programmable Plasmonic Metamaterial. Advanced Materials Technologies, 2017, 2, 1600202.	3.0	62
56	Compact Feeding Network for Array Radiations of Spoof Surface Plasmon Polaritons. Scientific Reports, 2016, 6, 22692.	1.6	41
57	Wave propagation in reconfigurable broadband gain metamaterials at microwave frequencies. Journal of Applied Physics, 2016, 119, 194904.	1.1	3
58	Transmission-spectrum-controllable spoof surface plasmon polaritons using tunable metamaterial particles. Applied Physics Letters, 2016, 108, .	1.5	54
59	Mode jumping of split-ring resonator metamaterials controlled by high-permittivity BST and incident electric fields. Scientific Reports, 2016, 6, 31274.	1.6	7
60	Smaller-loss planar SPP transmission line than conventional microstrip in microwave frequencies. Scientific Reports, 2016, 6, 23396.	1.6	69
61	A series of compact rejection filters based on the interaction between spoof SPPs and CSRRs. Scientific Reports, 2016, 6, 28256.	1.6	60
62	Capacitive-coupled Series Spoof Surface Plasmon Polaritons. Scientific Reports, 2016, 6, 24605.	1.6	63
63	Multi-layer topological transmissions of spoof surface plasmon polaritons. Scientific Reports, 2016, 6, 22702.	1.6	25
64	An Active Wideband and Wide-Angle Electromagnetic Absorber at Microwave Frequencies. IEEE Antennas and Wireless Propagation Letters, 2016, 15, 1913-1916.	2.4	56
65	Direct Radiations of Surface Plasmon Polariton Waves by Gradient Groove Depth and Flaring Metal Structure. IEEE Antennas and Wireless Propagation Letters, 2016, 15, 865-868.	2.4	61
66	Second-Harmonic Generation of Spoof Surface Plasmon Polaritons Using Nonlinear Plasmonic Metamaterials. ACS Photonics, 2016, 3, 139-146.	3.2	105
67	CMOS THz On-chip surface plasmon polariton T-lines and converter. , 2015, , .		5
68	A Hybrid Circuit for Spoof Surface Plasmons and Spatial Waveguide Modes to Reach Controllable Band-Pass Filters. Scientific Reports, 2015, 5, 16531.	1.6	94
69	Ultralow temperature terahertz magnetic thermodynamics of perovskite-like SmFeO3 ceramic. Scientific Reports, 2015, 5, 14777.	1.6	25
70	On-chip sub-terahertz surface plasmon polariton transmission lines in CMOS. Scientific Reports, 2015, 5, 14853.	1.6	60
71	Efficient conversion of surface-plasmon-like modes to spatial radiated modes. Applied Physics Letters, 2015, 106, .	1.5	149
72	Trapping surface plasmon polaritons on ultrathin corrugated metallic strips in microwave frequencies. Optics Express, 2015, 23, 7031.	1.7	53

Hao Chi Zhang

#	Article	IF	CITATIONS
73	Broadband Frequency-Selective Spoof Surface Plasmon Polaritons on Ultrathin Metallic Structure. Scientific Reports, 2015, 5, 8165.	1.6	123
74	Breaking the Challenge of Signal Integrity Using Time-Domain Spoof Surface Plasmon Polaritons. ACS Photonics, 2015, 2, 1333-1340.	3.2	143
75	Broadband amplification of spoof surface plasmon polaritons at microwave frequencies. Laser and Photonics Reviews, 2015, 9, 83-90.	4.4	204
76	Dynamic excitation of spoof surface plasmon polaritons. Applied Physics Letters, 2014, 105, .	1.5	24
77	Characteristic Impedance Extraction of Spoof Surface Plasmon Polariton Waveguides. Journal Physics D: Applied Physics, 0, , .	1.3	16