List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7111696/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modelling one- and two-dimensional solid-state NMR spectra. Magnetic Resonance in Chemistry, 2002, 40, 70-76.	1.1	3,565
2	Mg/Al Ordering in Layered Double Hydroxides Revealed by Multinuclear NMR Spectroscopy. Science, 2008, 321, 113-117.	6.0	591
3	Isotropic NMR Spectra of Half-Integer Quadrupolar Nuclei Using Satellite Transitions and Magic-Angle Spinning. Journal of the American Chemical Society, 2000, 122, 3242-3243.	6.6	321
4	Magnesium incorporation into hydroxyapatite. Biomaterials, 2011, 32, 1826-1837.	5.7	296
5	High-resolution chemical shift and chemical shift anisotropy correlation in solids using slow magic angle spinning. Journal of the American Chemical Society, 1992, 114, 8307-8309.	6.6	214
6	Room temperature activation of methane over Zn modified H-ZSM-5 zeolites: Insight from solid-state NMR and theoretical calculations. Chemical Science, 2012, 3, 2932.	3.7	157
7	NMR Heteronuclear Correlation between Quadrupolar Nuclei in Solids. Journal of the American Chemical Society, 2005, 127, 11540-11541.	6.6	143
8	Activated carbon from biochar: Influence of its physicochemical properties on the sorption characteristics of phenanthrene. Bioresource Technology, 2013, 149, 383-389.	4.8	138
9	Proton-detected 14N MAS NMR using homonuclear decoupled rotary resonance. Chemical Physics Letters, 2007, 435, 163-169.	1.2	135
10	Measuring Amide Nitrogen Quadrupolar Coupling by High-Resolution14N/13C NMR Correlation under Magic-Angle Spinning. Journal of the American Chemical Society, 2006, 128, 6040-6041.	6.6	133
11	Ultrahigh-field ⁶⁷ Zn NMR reveals short-range disorder in zeolitic imidazolate framework glasses. Science, 2020, 367, 1473-1476.	6.0	132
12	13C/14N heteronuclear multiple-quantum correlation with rotary resonance and REDOR dipolar recoupling. Journal of Magnetic Resonance, 2007, 184, 39-43.	1.2	127
13	NMR spectroscopy up to 35.2 T using a series-connected hybrid magnet. Journal of Magnetic Resonance, 2017, 284, 125-136.	1.2	122
14	lsotropic High Field NMR Spectra of Li-Ion Battery Materials with Anisotropy >1 MHz. Journal of the American Chemical Society, 2012, 134, 1898-1901.	6.6	117
15	Seeking Higher Resolution and Sensitivity for NMR of Quadrupolar Nuclei at Ultrahigh Magnetic Fields. Journal of the American Chemical Society, 2002, 124, 5634-5635.	6.6	108
16	ldentification of Cation Clustering in Mg–Al Layered Double Hydroxides Using Multinuclear Solid State Nuclear Magnetic Resonance Spectroscopy. Chemistry of Materials, 2012, 24, 2449-2461.	3.2	103
17	Enhancing MQMAS sensitivity using signals from multiple coherence transfer pathways. Journal of Magnetic Resonance, 2004, 168, 346-351.	1.2	100
18	Measuring multiple carbon–nitrogen distances in natural abundant solids using R-RESPDOR NMR. Chemical Communications, 2006, , 4712-4714.	2.2	91

#	Article	IF	CITATIONS
19	Spin Dynamics of Polarization Inversion Spin Exchange at the Magic Angle in Multiple Spin Systems. Journal of Magnetic Resonance, 2000, 143, 136-143.	1.2	85
20	Solid-State MAS NMR Studies of BrÃnsted Acid Sites in Zeolite H-Mordenite. Journal of the American Chemical Society, 2012, 134, 9708-9720.	6.6	85
21	On the practical aspects of recording wideline QCPMG NMR spectra. Journal of Magnetic Resonance, 2010, 204, 256-265.	1.2	84
22	Frequency- and phase-modulated heteronuclear decoupling in rotating solids. Solid State Nuclear Magnetic Resonance, 1997, 8, 153-159.	1.5	81
23	Satellite transition magic-angle spinning nuclear magnetic resonance spectroscopy of half-integer quadrupolar nuclei. Journal of Chemical Physics, 2001, 114, 10845-10853.	1.2	81
24	Chemical Insights into PbSe– <i>x</i> %HgSe: High Power Factor and Improved Thermoelectric Performance by Alloying with Discordant Atoms. Journal of the American Chemical Society, 2018, 140, 18115-18123.	6.6	80
25	Distribution of Aluminum Species in Zeolite Catalysts: ²⁷ Al NMR of Framework, Partially-Coordinated Framework, and Non-Framework Moieties. Journal of the American Chemical Society, 2021, 143, 6669-6680.	6.6	79
26	Structure and Catalytic Characterization of a Second Framework Al(IV) Site in Zeolite Catalysts Revealed by NMR at 35.2 T. Journal of the American Chemical Society, 2020, 142, 7514-7523.	6.6	78
27	Structural Evolution of Polymer-Derived Amorphous SiBCN Ceramics at High Temperature. Journal of Physical Chemistry C, 2011, 115, 24993-25000.	1.5	77
28	Dynamic allostery governs cyclophilin A–HIV capsid interplay. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14617-14622.	3.3	76
29	NMR chemical shift anisotropy measurements by RF driven rotary resonance. Chemical Physics Letters, 1996, 254, 349-357.	1.2	73
30	Identification of different oxygen species in oxide nanostructures with ¹⁷ O solid-state NMR spectroscopy. Science Advances, 2015, 1, e1400133.	4.7	72
31	Double-quantum filtered STMAS. Journal of Magnetic Resonance, 2003, 164, 369-372.	1.2	71
32	Direct Detection of Potassium Cations Bound to G-Quadruplex Structures by Solid-State39K NMR at 19.6 T. Journal of the American Chemical Society, 2003, 125, 7182-7183.	6.6	71
33	Oxidation of Polymer-Derived SiAlCN Ceramics. Journal of the American Ceramic Society, 2005, 88, 3075-3080.	1.9	70
34	Probing the calcium and sodium local environment in bones and teeth using multinuclear solid state NMR and X-ray absorption spectroscopy. Physical Chemistry Chemical Physics, 2010, 12, 1081-1091.	1.3	70
35	Structural Characterization of MAO and Related Aluminum Complexes. 1. Solid-State27Al NMR with Comparison to EFG Tensors from ab Initio Molecular Orbital Calculations. Journal of the American Chemical Society, 2001, 123, 12009-12017.	6.6	69
36	93Nb NMR chemical shift scale for niobia systems. Solid State Nuclear Magnetic Resonance, 2005, 28, 204-224.	1.5	69

#	Article	IF	CITATIONS
37	Natural-Abundance ⁴³ Ca Solid-State NMR Spectroscopy of Bone. Journal of the American Chemical Society, 2010, 132, 11504-11509.	6.6	67
38	Quantitative study on structural evolutions and associated energetics in polysilazane-derived amorphous silicon carbonitride ceramics. Acta Materialia, 2014, 72, 22-31.	3.8	62
39	Exploring Applications of Covalent Organic Frameworks: Homogeneous Reticulation of Radicals for Dynamic Nuclear Polarization. Journal of the American Chemical Society, 2018, 140, 6969-6977.	6.6	62
40	Magic Angle Spinning NMR Reveals Sequence-Dependent Structural Plasticity, Dynamics, and the Spacer Peptide 1 Conformation in HIV-1 Capsid Protein Assemblies. Journal of the American Chemical Society, 2013, 135, 17793-17803.	6.6	60
41	Proton–nitrogen-14 overtone two-dimensional correlation NMR spectroscopy of solid-sample at very fast magic angle sample spinning. Journal of Magnetic Resonance, 2013, 230, 160-164.	1.2	57
42	Ion Solvation by Channel Carbonyls Characterized by 17O Solid-State NMR at 21 T. Journal of the American Chemical Society, 2005, 127, 11922-11923.	6.6	56
43	Solid-State ¹⁷ 0 NMR of Pharmaceutical Compounds: Salicylic Acid and Aspirin. Journal of Physical Chemistry B, 2013, 117, 9643-9654.	1.2	56
44	A new mechanism for metal-catalyzed thiophene hydrogenolysis: proton-induced carbon-sulfur cleavage of coordinated thiophene in solution and in the solid state. Journal of the American Chemical Society, 1993, 115, 4943-4944.	6.6	55
45	95Mo Magic Angle Spinning NMR at High Field:Â Improved Measurements and Structural Analysis of the Quadrupole Interaction in Monomolybdates and Isopolymolybdates. Journal of Physical Chemistry B, 2005, 109, 14033-14042.	1.2	54
46	Ion-Binding Study by17O Solid-State NMR Spectroscopy in the Model Peptide Gly-Gly-Gly at 19.6 T. Journal of the American Chemical Society, 2006, 128, 9849-9855.	6.6	53
47	Bicelleâ€Enabled Structural Studies on a Membraneâ€Associated Cytochromeâ€b ₅ by Solidâ€6ta MAS NMR Spectroscopy. Angewandte Chemie - International Edition, 2008, 47, 7864-7867.	^{ite} 7.2	51
48	³⁵ Cl solid-state NMR of HCl salts of active pharmaceutical ingredients: structural prediction, spectral fingerprinting and polymorph recognition. CrystEngComm, 2014, 16, 7334-7356.	1.3	51
49	Rotary resonance echo double resonance for measuring heteronuclear dipolar coupling under MAS. Journal of Magnetic Resonance, 2006, 183, 235-241.	1.2	50
50	HIV-1 Capsid Function Is Regulated by Dynamics: Quantitative Atomic-Resolution Insights by Integrating Magic-Angle-Spinning NMR, QM/MM, and MD. Journal of the American Chemical Society, 2016, 138, 14066-14075.	6.6	48
51	Higher Magnetic Fields, Finer MOF Structural Information: ¹⁷ 0 Solid-State NMR at 35.2 T. Journal of the American Chemical Society, 2020, 142, 14877-14889.	6.6	47
52	Optimizing STMAS. Journal of Magnetic Resonance, 2002, 156, 131-137.	1.2	46
53	Self-Assembly in Ultrahigh Vacuum:Â Growth of Organic Thin Films with a StableIn-PlaneDirectional Order. Journal of the American Chemical Society, 1998, 120, 8563-8564.	6.6	44
54	¹⁷ O MAS NMR Correlation Spectroscopy at High Magnetic Fields. Journal of the American Chemical Society, 2017, 139, 17953-17963.	6.6	44

#	Article	IF	CITATIONS
55	Solid-state multinuclear magnetic resonance investigation of Pyrex®. Journal of Non-Crystalline Solids, 2006, 352, 2834-2840.	1.5	43
56	Q-shear transformation for MQMAS and STMAS NMR spectra. Journal of Magnetic Resonance, 2009, 201, 81-86.	1.2	43
57	Defects in Doped LaGaO ₃ Anionic Conductors: Linking NMR Spectral Features, Local Environments, and Defect Thermodynamics. Journal of the American Chemical Society, 2011, 133, 17662-17672.	6.6	43
58	Solid-State 25Mg NMR Spectroscopic and Computational Studies of Organic Compounds. Square-Pyramidal Magnesium(II) Ions in Aqua(magnesium) Phthalocyanine and Chlorophyll a. Journal of Physical Chemistry A, 2006, 110, 10084-10090.	1.1	42
59	Mapping the oxygen structure of γ-Al2O3 by high-field solid-state NMR spectroscopy. Nature Communications, 2020, 11, 3620.	5.8	42
60	Practical choice of 1H–1H decoupling schemes in through-bond 1H–{X} HMQC experiments at ultra-fast MAS. Journal of Magnetic Resonance, 2012, 214, 151-158.	1.2	41
61	Lithiation and Delithiation Dynamics of Different Li Sites in Li-Rich Battery Cathodes Studied by <i>Operando</i> Nuclear Magnetic Resonance. Chemistry of Materials, 2017, 29, 8282-8291.	3.2	41
62	Transthyretin Aggregation Pathway toward the Formation of Distinct Cytotoxic Oligomers. Scientific Reports, 2019, 9, 33.	1.6	41
63	Structural and Topological Control on Physical Properties of Arsenic Selenide Glasses. Journal of Physical Chemistry B, 2014, 118, 2284-2293.	1.2	40
64	Effects of fluorine on the structure of fluorohydroxyapatite: a study by XRD, solid-state NMR and Raman spectroscopy. Journal of Materials Chemistry B, 2015, 3, 34-38.	2.9	40
65	Analysis of a Solid-State Conformational Rearrangement Using15N NMR and X-ray Crystallography. Journal of Physical Chemistry A, 1998, 102, 3505-3513.	1.1	39
66	MATPASS/CPMG: A sensitivity enhanced magic-angle spinning sideband separation experiment for disordered solids. Journal of Magnetic Resonance, 2012, 221, 103-109.	1.2	39
67	Structure Determination of Boron-Based Oxidative Dehydrogenation Heterogeneous Catalysts With Ultrahigh Field 35.2 T ¹¹ B Solid-State NMR Spectroscopy. ACS Catalysis, 2020, 10, 13852-13866.	5.5	39
68	Dual Active Sites on Molybdenum/ZSMâ€5 Catalyst for Methane Dehydroaromatization: Insights from Solidâ€State NMR Spectroscopy. Angewandte Chemie - International Edition, 2021, 60, 10709-10715.	7.2	39
69	Probing the Transmembrane Structure and Dynamics of Microsomal NADPH-cytochrome P450 oxidoreductase by Solid-State NMR. Biophysical Journal, 2014, 106, 2126-2133.	0.2	38
70	Structural Changes Associated with Transthyretin Misfolding and Amyloid Formation Revealed by Solution and Solid-State NMR. Biochemistry, 2016, 55, 1941-1944.	1.2	38
71	lodide-conducting polymer electrolytes based on poly-ethylene glycol and MgI2: Synthesis and structural characterization. Electrochimica Acta, 2011, 57, 112-122.	2.6	37
72	Observation of a Continuous Random Network Structure in GexSe100–x Glasses: Results from High-Resolution 77Se MATPASS/CPMG NMR Spectroscopy. Journal of Physical Chemistry B, 2013, 117, 949-954.	1.2	37

#	Article	IF	CITATIONS
73	Intricate Short-Range Ordering and Strongly Anisotropic Transport Properties of Li _{1–<i>x</i>} Sn _{2+<i>x</i>} As ₂ . Journal of the American Chemical Society, 2015, 137, 3622-3630.	6.6	37
74	A Solid-State NMR and Computational Study of Sodium and Potassium Tetraphenylborates:Â23Na and39K NMR Signatures for Systems Containing Cationâ´'ï€ Interactions. Journal of Physical Chemistry A, 2004, 108, 10551-10559.	1.1	35
75	High-field NMR using resistive and hybrid magnets. Journal of Magnetic Resonance, 2008, 191, 135-140.	1.2	35
76	Enhancing MQMAS of low-γ nuclei by using a high B1 field balanced probe circuit. Journal of Magnetic Resonance, 2009, 200, 2-5.	1.2	35
77	Probing the local structures and protonic conduction pathways in scandium substituted BaZrO3 by multinuclear solid-state NMR spectroscopy. Journal of Materials Chemistry, 2010, 20, 6322.	6.7	35
78	Oblique Incidence Organic Molecular Beam Deposition and Nonlinear Optical Properties of Organic Thin Films with a Stable In-Plane Directional Order. Advanced Materials, 1999, 11, 745-749.	11.1	34
79	Tellurium Speciation, Connectivity, and Chemical Order in As _{<i>x</i>} Te _{100–<i>x</i>} Glasses: Results from Two-Dimensional ¹²⁵ Te NMR Spectroscopy. Journal of Physical Chemistry B, 2015, 119, 2081-2088.	1.2	34
80	<i>In Situ</i> NMR Tracks Real-Time Li Ion Movement in Hybrid Supercapacitor–Battery Device. Journal of Physical Chemistry C, 2016, 120, 6314-6323.	1.5	34
81	Solidâ€State ¹⁷ Oâ€NMR Reveals Hydrogenâ€Bonding Energetics: Not All Lowâ€Barrier Hydrogen Bonds Are Strong. Angewandte Chemie - International Edition, 2017, 56, 6166-6170.	7.2	33
82	Structure of Amorphous Selenium by 2D ⁷⁷ Se NMR Spectroscopy: An End to the Dilemma of Chain versus Ring. Angewandte Chemie - International Edition, 2017, 56, 9777-9781.	7.2	33
83	Third-order effect in solid-state NMR of quadrupolar nuclei. Chemical Physics Letters, 2003, 367, 163-169.	1.2	32
84	Functional stability of water wire–carbonyl interactions in an ion channel. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11908-11915.	3.3	32
85	Comparison of high-resolution solid-state NMR MQMAS and STMAS methods for half-integer quadrupolar nuclei. Solid State Nuclear Magnetic Resonance, 2007, 31, 1-9.	1.5	31
86	An Improved 2D Magic-Angle-Turning Pulse Sequence for the Measurement of Chemical-Shift Anisotropy. Journal of Magnetic Resonance Series A, 1996, 123, 140-143.	1.6	30
87	A tunable homonuclear dipolar decoupling scheme for high-resolution proton NMR of solids from slow to fast magic-angle spinning. Chemical Physics Letters, 2011, 503, 167-170.	1.2	30
88	Combined Ab Initio Computational and Solid-State 170 MAS NMR Studies of Crystalline P2O5. Journal of Physical Chemistry B, 2003, 107, 4894-4903.	1.2	29
89	A Multifaceted Study of Methane Adsorption in Metal–Organic Frameworks by Using Three Complementary Techniques. Chemistry - A European Journal, 2018, 24, 7866-7881.	1.7	29
90	Structure of TeO2 glass: Results from 2D 125Te NMR spectroscopy. Journal of Non-Crystalline Solids, 2019, 513, 183-190.	1.5	29

#	Article	IF	CITATIONS
91	New Pillared Layered Gallium Phosphonates in the Gallium/1,2-Ethylenediphosphonic Acid System. Inorganic Chemistry, 2001, 40, 6694-6698.	1.9	28
92	170 MQMAS NMR studies of zeolite HY. Microporous and Mesoporous Materials, 2008, 109, 156-162.	2.2	28
93	Measuring nitrogen quadrupolar coupling with13C detected wide-line 14N NMR under magic-angle spinning. Chemical Communications, 2008, , 868-870.	2.2	28
94	Cation substitution in β-tricalcium phosphate investigated using multi-nuclear, solid-state NMR. Journal of Solid State Chemistry, 2014, 212, 227-236.	1.4	28
95	Efficient and sideband-free 1H-detected 14N magic-angle spinning NMR. Journal of Chemical Physics, 2019, 151, 154202.	1.2	28
96	Fast Acquisition of Protonâ€Detected HETCOR Solidâ€State NMR Spectra of Quadrupolar Nuclei and Rapid Measurement of NH Bond Lengths by Frequency Selective HMQC and RESPDOR Pulse Sequences. Chemistry - A European Journal, 2020, 26, 7881-7888.	1.7	28
97	Novel Gallium Phosphatooxalate with Pendant Oxalate Ligands:  Preparation, Crystal Structure, NMR Spectroscopy, and Thermal Stability. Chemistry of Materials, 2002, 14, 4096-4103.	3.2	26
98	Satellite transition rotational resonance of homonuclear quadrupolar spins: magic-angle effect on spin-echo decay and inversion recovery. Chemical Physics Letters, 2003, 376, 75-82.	1.2	26
99	High-Resolution NMR of <i>S</i> = 3/2 Quadrupole Nuclei by Detection of Double-Quantum Satellite Transitions via Protons. Journal of Physical Chemistry Letters, 2020, 11, 4734-4740.	2.1	26
100	Shift-independent nuclear spin diffusion by slow magic-angle sample spinning for the exploration of solids. Chemical Physics Letters, 1996, 253, 13-19.	1.2	25
101	Solid-state NMR indirect detection of nuclei experiencing large anisotropic interactions using spinning sideband-selective pulses. Solid State Nuclear Magnetic Resonance, 2015, 72, 104-117.	1.5	25
102	Solid-State NMR Studies Reveal Native-like β-Sheet Structures in Transthyretin Amyloid. Biochemistry, 2016, 55, 5272-5278.	1.2	25
103	High-Resolution ¹⁷ 0 NMR Spectroscopy of Structural Water. Journal of Physical Chemistry B, 2019, 123, 3061-3067.	1.2	25
104	Deuterium polarization transfer in rotating solids and its application in structural investigation. Molecular Physics, 1998, 95, 1143-1152.	0.8	24
105	Applicability of natural abundance 33S solid-state NMR to cement chemistry. Cement and Concrete Research, 2006, 36, 1781-1783.	4.6	24
106	Quantitative covariance NMR by regularization. Journal of Biomolecular NMR, 2007, 38, 73-77.	1.6	24
107	Synthesis and characterizations of highly conductive and stable electrolyte Li10P3S12I. Energy Storage Materials, 2019, 22, 397-401.	9.5	24
108	Unveiling the Structure and Reactivity of Fatty-Acid Based (Nano)materials Thanks to Efficient and Scalable ¹⁷ 0 and ¹⁸ 0-Isotopic Labeling Schemes. Journal of the American Chemical Society, 2020, 142, 21068-21081.	6.6	24

#	Article	IF	CITATIONS
109	Direct ¹⁷ O Isotopic Labeling of Oxides Using Mechanochemistry. Inorganic Chemistry, 2020, 59, 13050-13066.	1.9	24
110	Single-scan 2D NMR spectroscopy on a 25 T bitter magnet. Chemical Physics Letters, 2007, 442, 478-482.	1.2	23
111	On the origin of high ionic conductivity in Na-doped SrSiO ₃ . Chemical Science, 2016, 7, 3667-3675.	3.7	23
112	Detailed analysis of the TIMES and TIMESO high-resolution MAS methods for high-resolution proton NMR. Journal of Magnetic Resonance, 2012, 223, 219-227.	1.2	22
113	Pushing the limits of sensitivity and resolution for natural abundance ⁴³ Ca NMR using ultra-high magnetic field (35.2 T). Chemical Communications, 2018, 54, 9591-9594.	2.2	22
114	Nature of Five-Coordinated Al in γ-Al ₂ O ₃ Revealed by Ultra-High-Field Solid-State NMR. ACS Central Science, 2022, 8, 795-803.	5.3	22
115	Structural Characterization of Al10O6iBu16(μ-H)2, a High Aluminum Content Cluster: Further Studies of Methylaluminoxane (MAO) and Related Aluminum Complexes. Inorganic Chemistry, 2007, 46, 44-47.	1.9	21
116	3D 1H–13C–14N correlation solid-state NMR spectrum. Journal of Magnetic Resonance, 2008, 193, 321-325.	1.2	21
117	Size-Induced Structural Disorder Enables Ultrahard Oxides. Journal of Physical Chemistry C, 2017, 121, 13898-13905.	1.5	21
118	A magic-angle turning NMR experiment for separating spinning sidebands of half-integer quadrupolar nuclei. Chemical Physics Letters, 2010, 496, 162-166.	1.2	20
119	High-Resolution ³⁹ K NMR Spectroscopy of Bio-organic Solids. Journal of the American Chemical Society, 2011, 133, 19570-19573.	6.6	20
120	An efficient amplification pulse sequence for measuring chemical shift anisotropy under fast magic-angle spinning. Journal of Magnetic Resonance, 2011, 213, 196-199.	1.2	20
121	Pathogenic Mutations Induce Partial Structural Changes in the Native β-Sheet Structure of Transthyretin and Accelerate Aggregation. Biochemistry, 2017, 56, 4808-4818.	1.2	20
122	High-field QCPMG NMR of large quadrupolar patterns using resistive magnets. Solid State Nuclear Magnetic Resonance, 2009, 36, 159-163.	1.5	19
123	On the magic-angle turning and phase-adjusted spinning sidebands experiments. Journal of Magnetic Resonance, 2010, 204, 150-154.	1.2	19
124	Crystal structure and proton conductivity of BaSn _{0.6} Sc _{0.4} O _{3â^î^} : insights from neutron powder diffraction and solid-state NMR spectroscopy. Journal of Materials Chemistry A, 2016, 4, 5088-5101.	5.2	18
125	A soft-chemistry approach to the synthesis of amorphous calcium ortho/pyrophosphate biomaterials of tunable composition. Acta Biomaterialia, 2020, 103, 333-345.	4.1	18
126	Recent Advances in Solid-State Nuclear Magnetic Resonance Techniques for Materials Research. Annual Review of Materials Research, 2020, 50, 493-520.	4.3	18

#	Article	IF	CITATIONS
127	Detection of "free―oxide ions in low-silica Ca/Mg silicate glasses: Results from 17O →29Si HETCOR NMR. Journal of Non-Crystalline Solids, 2016, 445-446, 1-6.	1.5	17
128	Structure of BaO-TeO2 glasses: A two-dimensional 125Te NMR spectroscopic study. Journal of Non-Crystalline Solids, 2018, 481, 282-288.	1.5	17
129	Probing Interactions of γâ€Alumina with Water via Multinuclear Solidâ€State NMR Spectroscopy. ChemCatChem, 2020, 12, 1569-1574.	1.8	17
130	Identification of CO2 adsorption sites on MgO nanosheets by solid-state nuclear magnetic resonance spectroscopy. Nature Communications, 2022, 13, 707.	5.8	17
131	Stackingâ€Fault Enhanced Oxygen Redox in Li ₂ MnO ₃ . Advanced Energy Materials, 2022, 12, .	10.2	17
132	Low resolution NMR magnets in the 23 to 35 T range at the NHMFL. IEEE Transactions on Applied Superconductivity, 2002, 12, 447-451.	1.1	16
133	Gadolinium based endohedral metallofullerene Gd2@C79N as a relaxation boosting agent for dissolution DNP at high fields. Chemical Communications, 2018, 54, 2425-2428.	2.2	16
134	Using the heteronuclear Bloch-Siegert shift of protons for B1 calibration of insensitive nuclei not present in the sample. Journal of Magnetic Resonance, 2020, 310, 106636.	1.2	16
135	Rotary resonance in multiple-quantum magic-angle spinning. Chemical Physics Letters, 2002, 352, 252-261.	1.2	14
136	Direct observation of 17O–185/187Re 1J-coupling in perrhenates by solid-state 17O VT MAS NMR: Temperature and self-decoupling effects. Journal of Magnetic Resonance, 2013, 230, 98-110.	1.2	14
137	Cross-polarization phenomena in the NMR of fast spinning solids subject to adiabatic sweeps. Journal of Chemical Physics, 2015, 142, 064201.	1.2	14
138	17 O NMR Studies of Yeast Ubiquitin in Aqueous Solution and in the Solid State. ChemBioChem, 2021, 22, 826-829.	1.3	13
139	Solid-state ¹⁷ 0 NMR study of α- <scp>d</scp> -glucose: exploring new frontiers in isotopic labeling, sensitivity enhancement, and NMR crystallography. Chemical Science, 2022, 13, 2591-2603.	3.7	13
140	A strategy for acquisition and analysis of complex natural abundance 33S solid-state NMR spectra of a disordered tetrathio transition-metal anion. Journal of Magnetic Resonance, 2010, 202, 173-179.	1.2	12
141	⁹⁵ Mo Solid-State Nuclear Magnetic Resonance Spectroscopy and Quantum Simulations: Synergetic Tools for the Study of Molybdenum Cluster Materials. Inorganic Chemistry, 2013, 52, 617-627.	1.9	12
142	Medium-range order in disordered K-feldspars by multinuclear NMR. American Mineralogist, 2013, 98, 2115-2131.	0.9	12
143	Spin-locking and cross-polarization under magic-angle spinning of uniformly labeled solids. Journal of Magnetic Resonance, 2015, 256, 23-29.	1.2	12
144	⁷⁷ Se Nuclear Spin–Lattice Relaxation in Binary Ge–Se Glasses: Insights into Floppy Versus Rigid Behavior of Structural Units. Journal of Physical Chemistry B, 2015, 119, 5747-5753.	1.2	12

#	Article	IF	CITATIONS
145	Structure of Amorphous Selenium by 2D 77 Se NMR Spectroscopy: An End to the Dilemma of Chain versus Ring. Angewandte Chemie, 2017, 129, 9909-9913.	1.6	12
146	A Quadrupole-Central-Transition ¹⁷ 0 NMR Study of Nicotinamide: Experimental Evidence of Cross-Correlation between Second-Order Quadrupolar Interaction and Magnetic Shielding Anisotropy. Journal of Physical Chemistry B, 2018, 122, 4813-4820.	1.2	12
147	Structure and Chemical Order in S–Se Binary Glasses. Journal of Physical Chemistry B, 2018, 122, 12219-12226.	1.2	12
148	14N overtone nuclear magnetic resonance of rotating solids. Journal of Chemical Physics, 2018, 149, 064201.	1.2	12
149	Low-power STMAS – breaking through the limit of large quadrupolar interactions in high-resolution solid-state NMR spectroscopy. Physical Chemistry Chemical Physics, 2020, 22, 21119-21123.	1.3	12
150	Fieldâ€stepped ultraâ€wideline NMR at up to 36ÂT: On the inequivalence between field and frequency stepping. Magnetic Resonance in Chemistry, 2021, 59, 951-960.	1.1	12
151	Structure and Connectivity in an Amorphous Silicon Oxycarbide Polymer-Derived Ceramic: Results from 2D ²⁹ Si NMR Spectroscopy. Journal of Physical Chemistry C, 2021, 125, 4777-4784.	1.5	12
152	Hypersensitivity of the Glass Transition to Pressure History in a Metal–Organic Framework Glass. Chemistry of Materials, 2022, 34, 5030-5038.	3.2	12
153	An efficient simulation of variable-angle spinning lineshapes for the quadrupolar nuclei with half-integer spin. Journal of Magnetic Resonance, 1991, 95, 509-522.	0.5	11
154	Correlation of deuterium quadrupolar tensor orientation via spin diffusion under slow magic-angle sample spinning. Chemical Physics Letters, 1998, 283, 262-268.	1.2	11
155	Determination of the Amide-Plane Orientations in a Cyclo-Î ² -Peptide by Magic-Angle-Spinning Deuterium-Correlation Spectroscopy, and Comparison with the Powder X-Ray Structure. Helvetica Chimica Acta, 2001, 84, 208-221.	1.0	11
156	High-field 19.6T 27Al solid-state MAS NMR of in vitro aluminated brain tissue. Journal of Magnetic Resonance, 2004, 170, 257-262.	1.2	11
157	Quantitative Dynamics and Structure for Crystalline Cs ₂ WO ₄ and KMnO ₄ Determined from High-Field ¹⁷ O Variable-Temperature MAS NMR Experiments. Journal of Physical Chemistry C, 2014, 118, 20639-20646.	1.5	11
158	Mechanisms of structural accommodation of Se deficiency in binary Ga 2 Se 3 –GeSe 2 glasses: Results from 77 Se MATPASS/CPMG NMR spectroscopy. Journal of Non-Crystalline Solids, 2015, 410, 14-19.	1.5	11
159	NMR and EPR Studies of Free-Radical Intermediates from Experiments Mimicking the Winds on Mars: A Sink for Methane and Other Gases. Journal of Physical Chemistry C, 2016, 120, 26138-26149.	1.5	11
160	Solid-State ¹⁷ O NMR Study of Carboxylic Acid Dimers: Simultaneously Accessing Spectral Properties of Low- and High-Energy Tautomers. Journal of Physical Chemistry A, 2019, 123, 8243-8253.	1.1	11
161	Two distinct aggregation pathways in transthyretin misfolding and amyloid formation. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 344-349.	1.1	11
162	Isotropic solid-state MQMAS NMR spectra for large quadrupolar interactions using satellite-transition selective inversion pulses and low rf fields. Journal of Magnetic Resonance, 2021, 324, 106913.	1.2	11

#	Article	IF	CITATIONS
163	Selective 1H-14N Distance Measurements by 14N Overtone Solid-State NMR Spectroscopy at Fast MAS. Frontiers in Molecular Biosciences, 2021, 8, 645347.	1.6	11
164	On the use of single-frequency versus double-frequency satellite-transition pulses for MQMAS. Journal of Magnetic Resonance, 2021, 328, 106994.	1.2	11
165	From <i>Operando</i> Raman Mechanochemistry to "NMR Crystallographyâ€! Understanding the Structures and Interconversion of Zn-Terephthalate Networks Using Selective ¹⁷ O-Labeling. Chemistry of Materials, 2022, 34, 2292-2312.	3.2	11
166	Characterization of cation environments in polycrystalline forsterite by 25Mg MAS, MQMAS, and QCPMG NMR. American Mineralogist, 2010, 95, 1601-1607.	0.9	10
167	Synthesis of ¹⁷ O-Labeled Cs ₂ WO ₄ and Its Ambient- and Low-Temperature Solid-State ¹⁷ O MAS NMR Spectra. Inorganic Chemistry, 2011, 50, 7676-7684.	1.9	10
168	Measuring 13C/15N chemical shift anisotropy in [13C,15N] uniformly enriched proteins using CSA amplification. Solid State Nuclear Magnetic Resonance, 2015, 72, 96-103.	1.5	10
169	Structural Model of the Tubular Assembly of the Rous Sarcoma Virus Capsid Protein. Journal of the American Chemical Society, 2017, 139, 2006-2013.	6.6	10
170	Second-order quadrupolar line shapes under molecular dynamics: An additional transition in the extremely fast regime. Solid State Nuclear Magnetic Resonance, 2017, 84, 14-19.	1.5	10
171	Labeling and Probing the Silica Surface Using Mechanochemistry and 17 Oâ€NMR Spectroscopy**. Chemistry - A European Journal, 2021, 27, 12574-12588.	1.7	10
172	Indirect NMR detection via proton of nuclei subject to large anisotropic interactions, such as 14N, 195Pt, and 35Cl, using the T-HMQC sequence. Journal of Chemical Physics, 2022, 156, 064202.	1.2	10
173	Molecular and structural information from variable-angle spinning NMR dipolar spectra of 13C-14N systems. Journal of Magnetic Resonance, 1990, 90, 522-534.	0.5	9
174	High-Field17O MAS NMR Reveals1J(17O-127I) with its Sign and the NMR Crystallography of the Scheelite Structures for NaIO4and KIO4. Journal of Physical Chemistry C, 2015, , 150612155518000.	1.5	9
175	Structural analysis of Cu–As–Te glasses: Results from Raman and 65Cu NMR spectroscopy. Journal of Non-Crystalline Solids, 2016, 432, 527-534.	1.5	9
176	Solid‣tate 17 Oâ€NMR Reveals Hydrogenâ€Bonding Energetics: Not All Lowâ€Barrier Hydrogen Bonds Are Strong. Angewandte Chemie, 2017, 129, 6262-6266.	1.6	9
177	Measurement of amide proton chemical shift anisotropy in perdeuterated proteins using CSA amplification. Journal of Magnetic Resonance, 2017, 284, 33-38.	1.2	9
178	Dynamical processes related to viscous flow in a supercooled arsenic selenide glass-forming liquid: Results from high-temperature 77Se NMR spectroscopy. Journal of Non-Crystalline Solids, 2019, 526, 119698.	1.5	9
179	Application of NMR Crystallography to Highly Disordered Templated Materials: Extensive Local Structural Disorder in the Gallophosphate GaPO-34A. Inorganic Chemistry, 2020, 59, 11616-11626.	1.9	9
180	Structural Characterization of Cardiac Ex Vivo Transthyretin Amyloid: Insight into the Transthyretin Misfolding Pathway In Vivo. Biochemistry, 2020, 59, 1800-1803.	1.2	9

#	Article	IF	CITATIONS
181	17 O solidâ€state NMR at ultrahigh magnetic field of 35.2ÂT: Resolution of inequivalent oxygen sites in different phases of MOF MILâ€53(Al). Magnetic Resonance in Chemistry, 2021, 59, 940-950.	1.1	9
182	13C Dipolar spectroscopy of nitromethane. Molecular Physics, 1988, 64, 1031-1040.	0.8	8
183	14N Polarization Inversion Spin Exchange at Magic Angle (PISEMA). Journal of Magnetic Resonance, 2009, 196, 96-99.	1.2	8
184	Curvature of the Retroviral Capsid Assembly Is Modulated by a Molecular Switch. Journal of Physical Chemistry Letters, 2021, 12, 7768-7776.	2.1	8
185	Revealing BrÃ,nsted Acidic Bridging SiOHAl Groups on Amorphous Silica–Alumina by Ultrahigh Field Solid-State NMR. Journal of Physical Chemistry Letters, 2021, 12, 11563-11572.	2.1	8
186	Experimental aspects in acquisition of wide bandwidth solid-state MAS NMR spectra of low-Î ³ nuclei with different opportunities on two commercial NMR spectrometers. Journal of Magnetic Resonance, 2011, 211, 195-206.	1.2	7
187	Cr2O5 as new cathode for rechargeable sodium ion batteries. Journal of Solid State Chemistry, 2016, 242, 96-101.	1.4	7
188	Probing nitrite ion dynamics in Na NO 2 crystals by solidâ€state 17 O NMR. Concepts in Magnetic Resonance Part A: Bridging Education and Research, 2016, 45A, .	0.2	7
189	Structural and Topological Evolution in Si _{<i>x</i>} Se _{1–<i>x</i>} Glasses: Results from 1D and 2D ²⁹ Si and ⁷⁷ Se NMR Spectroscopy. Journal of Physical Chemistry B, 2017, 121, 4283-4292.	1.2	7
190	Network Structure and Connectivity in SnO–P ₂ O ₅ Glasses: Results from 2D ³¹ P and ¹¹⁹ Sn NMR Spectroscopy. Journal of Physical Chemistry B, 2018, 122, 7416-7425.	1.2	7
191	Three-dimensional nuclear magnetic resonance exchange spectroscopy with rotary resonance in rotating solids: Application to tropolone dynamics. Journal of Chemical Physics, 1998, 108, 9444-9451.	1.2	6
192	Perspectives on high-field and solid-state NMR methods of quadrupole nuclei. Journal of Magnetic Resonance, 2019, 306, 86-90.	1.2	6
193	Two- and Three-Dimensional ¹³ C– ¹⁷ O Heteronuclear Correlation NMR Spectroscopy for Studying Organic and Biological Solids. Journal of Physical Chemistry Letters, 2021, 12, 8897-8902.	2.1	6
194	Structure and Fragility of Zn-phosphate glasses: Results from multinuclear NMR spectroscopy and calorimetry. Journal of Non-Crystalline Solids, 2022, 580, 121395.	1.5	6
195	Impact of Adsorption Configurations on Alcohol Dehydration over Alumina Catalysts. Journal of Physical Chemistry C, 2022, 126, 10073-10080.	1.5	6
196	Residue-Specific High-Resolution ¹⁷ O Solid-State Nuclear Magnetic Resonance of Peptides: Multidimensional Indirect ¹ H Detection and Magic-Angle Spinning. Journal of Physical Chemistry Letters, 2022, 13, 6549-6558.	2.1	6
197	Effect of <scp><scp>Ba</scp></scp> Nonstoichiometry in <scp><scp>Ba</scp></scp> _{<i>x</i>} (<scp><scp>Zr</scp>_{0.8}<scp><scp>Yon Population of 5â€Coordinated <i>Y</i>. Journal of the American Ceramic Society, 2014, 97, 3749-3754.</scp></scp></scp>	> 1/9 cp><	รน _ี ธิ>0.2
198	Structure and physical properties of glasses in the system Ag2Se–Ga2Se3–GeSe2. Journal of	1.5	5

Non-Crystalline Solids, 2016, 437, 34-42.

#	Article	IF	CITATIONS
199	Atomic-Level Structure of Mesoporous Hexagonal Boron Nitride Determined by High-Resolution Solid-State Multinuclear Magnetic Resonance Spectroscopy and Density Functional Theory Calculations. Chemistry of Materials, 0, , .	3.2	5
200	Role of preparation method on the extent of montmorillonite catalysis for oligomer formation. Applied Clay Science, 2014, 101, 90-93.	2.6	4
201	Exploiting ¹³ C/ ¹⁴ N solid-state NMR distance measurements to assign dihedral angles and locate neighboring molecules. Chemical Communications, 2018, 54, 6376-6379.	2.2	4
202	Compositional Evolution of the Structure and Connectivity in Binary P–Se Glasses: Results from 2D Multinuclear NMR and Raman Spectroscopy. Journal of Physical Chemistry B, 2021, 125, 13057-13067.	1.2	4
203	Stress induced alignment of Se chains in supercooled Ge5Se95 liquid. Journal of Non-Crystalline Solids, 2016, 449, 55-58.	1.5	3
204	Chemical order in binary Se-Te glasses: Results from high-resolution 2D 77Se and 125Te MATPASS NMR spectroscopy. Journal of Non-Crystalline Solids, 2020, 544, 120212.	1.5	3
205	Second-order phase correction of NMR spectra acquired using linear frequency-sweeps. Magnetic Resonance Letters, 2022, 2, 1-8.	0.7	3
206	Reducing the effects of weak homonuclear dipolar coupling with CPMG pulse sequences for static and spinning solids. Journal of Magnetic Resonance, 2022, 337, 107174.	1.2	3
207	Dipolar Heteronuclear Correlation Solid-State NMR Experiments between Half-Integer Quadrupolar Nuclei: The Case of ¹¹ B– ¹⁷ O. Journal of Physical Chemistry C, 2022, 126, 11652-11666.	1.5	3
208	A Simple Method to Increase the Spectral Window for Ultra Wide NMR Spectroscopy. Journal of Magnetic Resonance, 2000, 146, 245-246.	1.2	2
209	Dual Active Sites on Molybdenum/ZSMâ€5 Catalyst for Methane Dehydroaromatization: Insights from Solidâ€5tate NMR Spectroscopy. Angewandte Chemie, 2021, 133, 10804-10810.	1.6	2
210	Fast REDOR with CPMG multiple-echo acquisition. Journal of Magnetic Resonance, 2014, 238, 82-86.	1.2	1
211	Morphology-Dependent HIV-Enhancing Effect of Semen-Derived Enhancer of Viral Infection. Biophysical Journal, 2015, 108, 2028-2037.	0.2	1
212	Dynamic Solid-State NMR Experiments Reveal Structural Changes for a Methyl Silicate Nanostructure on Deuterium Substitution. Journal of Physical Chemistry C, 2017, 121, 26507-26518.	1.5	1
213	Unique Insights into the Structural and Functional Biology of Membrane Proteins from Solid State NMR Spectroscopy. Biophysical Journal, 2018, 114, 207a.	0.2	1
214	Exciting Opportunities for Solid-State 95Mo NMR Studies of MoS2 Nanostructures in Materials Research from a Low to an Ultrahigh Magnetic Field (35.2 T). Journal of Physical Chemistry C, 2021, 125, 7824-7838.	1.5	1
215	NMR crystallography of beryl minerals at 9.4â€T and 19.6â€T. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, e244-e245.	0.0	1
216	Structure and crystallization behavior of complex mold flux glasses in the system CaOâ€Na₂Oâ€Li₂Oâ€CaF₂â€B₂O₃â€Si A multiâ€nuclear NMR spectroscopic study . Journal of the American Ceramic Society, 2022, 105, 6140-6148.	/>O <sub 1.92</sub 	sub _} :

#	Article	IF	CITATIONS
217	Combined ab initio Computational and Solid-State170 MAS NMR Studies of Crystalline P2O5 ChemInform, 2003, 34, no.	0.1	0
218	Gramicidin Ion Binding and Conductance: New Insights from 170 Solid State NMR Spectroscopy in a 1.5 GHZ Spectrometer. Biophysical Journal, 2018, 114, 305a-306a.	0.2	0
219	Frontispiece: A Multifaceted Study of Methane Adsorption in Metal-Organic Frameworks by Using Three Complementary Techniques. Chemistry - A European Journal, 2018, 24, .	1.7	0