Francesco Geobaldo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7111688/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Real-Time Monitoring of the In Situ Microfluidic Synthesis of Ag Nanoparticles on Solid Substrate for Reliable SERS Detection. Biosensors, 2021, 11, 520.	2.3	2
2	Innovative Coatings Based on Peppermint Essential Oil on Titanium and Steel Substrates: Chemical and Mechanical Protection Ability. Materials, 2020, 13, 516.	1.3	7
3	PEO/LACP hybrid solid polymer electrolytes for ambient temperature lithium batteries by solvent-free, "one pot―preparation. Journal of Energy Storage, 2019, 26, 100947.	3.9	117
4	Determination of the geographical origin of green coffee beans using NIR spectroscopy and multivariate data analysis. Food Control, 2019, 99, 137-145.	2.8	102
5	Kinetic modeling of hazelnut drying: Effects of different cultivars and drying parameters. Journal of Food Process Engineering, 2018, 41, e12632.	1.5	6
6	Label-Free SERS Discrimination and In Situ Analysis of Life Cycle in Escherichia coli and Staphylococcus epidermidis. Biosensors, 2018, 8, 131.	2.3	16
7	Nanomaterials for the Abatement of Pharmaceuticals and Personal Care Products from Wastewater. Applied Sciences (Switzerland), 2018, 8, 170.	1.3	46
8	Development of an automated method for the identification of defective hazelnuts based on RGB image analysis and colourgrams. Food Control, 2018, 94, 233-240.	2.8	38
9	SERS-active metal-dielectric nanostructures integrated in microfluidic devices for label-free quantitative detection of miRNA. Faraday Discussions, 2017, 205, 271-289.	1.6	39
10	Silver-doped keratin nanofibers preserve a titanium surface from biofilm contamination and favor soft-tissue healing. Journal of Materials Chemistry B, 2017, 5, 8366-8377.	2.9	39
11	SERS-active Metal-dielectric Nanostructures Integrated in Microfluidic Devices for Ultra-sensitive Label-free miRNA Detection. Procedia Technology, 2017, 27, 37-38.	1.1	Ο
12	Role of ice structuring proteins on freezing–thawing cycles of pasta sauces. Journal of Food Science and Technology, 2016, 53, 4216-4223.	1.4	10
13	Immobilization of Oligonucleotides on Metal-Dielectric Nanostructures for miRNA Detection. Analytical Chemistry, 2016, 88, 9554-9563.	3.2	41
14	SERS-Active Ag Nanoparticles on Porous Silicon and PDMS Substrates: A Comparative Study of Uniformity and Raman Efficiency. Journal of Physical Chemistry C, 2016, 120, 16946-16953.	1.5	57
15	A simple route toward next-gen green energy storage concept by nanofibres-based self-supporting electrodes and a solid polymeric design. Carbon, 2016, 107, 811-822.	5.4	80
16	Surface-enhanced Raman spectroscopy on porous silicon membranes decorated with Ag nanoparticles integrated in elastomeric microfluidic chips. RSC Advances, 2016, 6, 21865-21870.	1.7	32
17	Concentration quenching in an Er-doped phosphate glass for compact optical lasers and amplifiers. Journal of Alloys and Compounds, 2016, 657, 678-683.	2.8	105
18	Simultaneous determination by NIR spectroscopy of the roasting degree and Arabica/Robusta ratio in roasted and ground coffee. Food Control, 2016, 59, 683-689.	2.8	73

#	Article	IF	CITATIONS
19	Formation and oxygen diffusion barrier properties of fish gelatin/natural sodium montmorillonite clay self-assembled multilayers onto the biopolyester surface. RSC Advances, 2015, 5, 61465-61480.	1.7	5
20	Discrimination between washed <i>Arabica</i> , natural <i>Arabica</i> and <i>Robusta</i> coffees by using near infrared spectroscopy, electronic nose and electronic tongue analysis. Journal of the Science of Food and Agriculture, 2015, 95, 2192-2200.	1.7	71
21	SERS active silver nanoparticles synthesized by inkjet printing on mesoporous silicon. Nanoscale Research Letters, 2014, 9, 527.	3.1	40
22	Fe- and V-doped mesoporous titania prepared by direct synthesis: Characterization and role in the oxidation of AO7 by H2O2 in the dark. Catalysis Today, 2014, 227, 71-79.	2.2	27
23	Protein immobilization on nanoporous silicon functionalized by RF activated plasma polymerization of Acrylic Acid. Journal of Colloid and Interface Science, 2014, 416, 73-80.	5.0	25
24	Silver Nanoparticles on Porous Silicon: Approaching Single Molecule Detection in Resonant SERS Regime. Journal of Physical Chemistry C, 2013, 117, 20139-20145.	1.5	63
25	Effects of gas atmospheres on poly(lactic acid) film in acrylic acid plasma treatment. Applied Surface Science, 2013, 283, 181-187.	3.1	22
26	Surface modification of porous silicon microparticles by sonochemistry. RSC Advances, 2013, 3, 18799.	1.7	4
27	Inter-annual and seasonal variability in PM10 samples monitored in the city of Turin (Italy) from 2002 to 2005. Microchemical Journal, 2013, 107, 76-85.	2.3	19
28	Temporal trends of elements in Turin (Italy) atmospheric particulate matter from 1976 to 2001. Chemosphere, 2013, 90, 2578-2588.	4.2	19
29	Post-curing conversion kinetics as functions of the irradiation time and increment thickness. Journal of Applied Oral Science, 2013, 21, 190-195.	0.7	15
30	Switching of fluorescence mediated by a peroxynitrite–glutathione redox reaction in a porous silicon nanoreactor. Physical Chemistry Chemical Physics, 2012, 14, 5251.	1.3	7
31	Direct patterning of silver particles on porous silicon by inkjet printing of a silver salt via in-situ reduction. Nanoscale Research Letters, 2012, 7, 502.	3.1	48
32	Properties of poly(lactic acid) nanocomposites based on montmorillonite, sepiolite and zirconium phosphonate. EXPRESS Polymer Letters, 2012, 6, 914-926.	1.1	69
33	SERS active Ag nanoparticles in mesoporous silicon: detection of organic molecules and peptide–antibody assays. Journal of Raman Spectroscopy, 2012, 43, 730-736.	1.2	70
34	Prediction of the optimum harvest time of †Scarlet' apples using DR-UV–Vis and NIR spectroscopy. Postharvest Biology and Technology, 2012, 69, 15-23.	2.9	45
35	Synthesis, Characterization, and Thiophene Hydrodesulfurization Activity of Novel Macroporous and Mesomacroporous Carbon. Industrial & Engineering Chemistry Research, 2011, 50, 2530-2535.	1.8	27
36	Chitosan-functionalized porous silicon optical transducer for the detection ofcarboxylic acid-containing drugs in water. Journal of Materials Chemistry, 2011, 21, 2294-2302.	6.7	59

#	Article	IF	CITATIONS
37	Photocatalytic Degradation of Ethylene Emitted by Fruits with TiO ₂ Nanoparticles. Industrial & Engineering Chemistry Research, 2011, 50, 2536-2543.	1.8	78
38	Synthesis of amorphous silicon/magnesia based direct opals with tunable optical properties. Optical Materials, 2011, 33, 563-569.	1.7	8
39	Room temperature ammonia sensors based on zinc oxide and functionalized graphite and multi-walled carbon nanotubes. Sensors and Actuators B: Chemical, 2011, 152, 144-154.	4.0	98
40	New-generation curing units and short irradiation time: the degree of conversion of microhybrid composite resin. Quintessence International, 2011, 42, e89-95.	0.3	9
41	Synthesis, characterization, and photocatalytic application of novel TiO2 nanoparticles. Chemical Engineering Journal, 2010, 157, 45-51.	6.6	183
42	Nanoporous carbon materials obtained by sucrose carbonization in the presence of KOH. Microporous and Mesoporous Materials, 2010, 132, 414-420.	2.2	110
43	Hydrogen production from nano-porous Si powder formed by stain etching. International Journal of Hydrogen Energy, 2010, 35, 6773-6778.	3.8	51
44	Metalâ€dielectric nanostructures for amplified Raman and fluorescence spectroscopy. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 1196-1199.	0.8	10
45	Synthesis under Pressure of Potential Precursors of CN <i> _x </i> Materials Based on Melamine and Phenolic Resins. Journal of Macromolecular Science - Physics, 2010, 49, 371-382.	0.4	15
46	Polylactic Acid and Polylactic Acid-Based Nanocomposite Photooxidation. Biomacromolecules, 2010, 11, 2919-2926.	2.6	144
47	Bioconjugate functionalization of thermally carbonized porous silicon using a radical coupling reaction. Dalton Transactions, 2010, 39, 10847.	1.6	46
48	Fast optical vapour sensing by Bloch surface waves on porous siliconmembranes. Physical Chemistry Chemical Physics, 2010, 12, 502-506.	1.3	52
49	SERSâ€∎ctive substrates based on silvered porous silicon. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 1736-1739.	0.8	21
50	Doubly resonant porous silicon microcavities for enhanced detection of fluorescent organic molecules. Sensors and Actuators B: Chemical, 2009, 137, 467-470.	4.0	39
51	Sonochemical preparation of high surface area MgAl2O4 spinel. Ultrasonics Sonochemistry, 2009, 16, 136-140.	3.8	35
52	Microstructure and optical properties of porous silicon after plasma assisted nitridation. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 1661-1664.	0.8	4
53	A version of Stöber synthesis enabling the facile prediction of silica nanospheres size for the fabrication of opal photonic crystals. Journal of Nanoparticle Research, 2008, 10, 1225-1229.	0.8	41
54	Porous silicon as efficient surface enhanced Raman scattering (SERS) substrate. Applied Surface Science, 2008, 254, 7494-7497.	3.1	78

#	Article	IF	CITATIONS
55	Optical response with threefold symmetry axis on oriented microdomains of opal photonic crystals. Physical Review B, 2008, 78, .	1.1	28
56	Coupling of surface waves in highly defined one-dimensional porous silicon photonic crystals for gas sensing applications. Applied Physics Letters, 2007, 91, .	1.5	66
57	Synthesis, characterization and modelling of silicon based opals. Journal of Non-Crystalline Solids, 2006, 352, 1425-1429.	1.5	26
58	Controlled light emission from dye-impregnated porous silicon microcavities. Journal of Non-Crystalline Solids, 2006, 352, 1230-1233.	1.5	9
59	Study of Porous Silicon Nanostructures as Hydrogen Reservoirs ChemInform, 2006, 37, no.	0.1	0
60	Self-alignment of liquid crystals in three-dimensional photonic crystals. Physical Review E, 2006, 74, 040702.	0.8	16
61	A Nanostructured Porous Silicon Near Insulator Becomes Either a p- or an n-Type Semiconductor upon Gas Adsorption. Advanced Materials, 2005, 17, 528-531.	11.1	51
62	Carriers reactivation in p+-type porous silicon accompanies hydrogen desorption. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 3193-3197.	0.8	1
63	Boron passivation and its reactivation in mesoporous silicon: a "chemical―model. Physica Status Solidi (A) Applications and Materials Science, 2005, 202, 1567-1570.	0.8	5
64	Study of Porous Silicon Nanostructures as Hydrogen Reservoirs. Journal of Physical Chemistry B, 2005, 109, 19711-19718.	1.2	80
65	ESR Study of Conduction Electrons in B-Doped Porous Silicon Generated by the Adsorption of Lewis Bases. Journal of the Electrochemical Society, 2005, 152, G329.	1.3	8
66	A new route to the surface functionalisation of porous silicon. Sensors and Actuators B: Chemical, 2004, 100, 29-32.	4.0	11
67	Free carriers reactivation on p+-mesoporous silicon through ammonia adsorption: a FTIR study. Sensors and Actuators B: Chemical, 2004, 100, 205-208.	4.0	17
68	Oxidised porous silicon impregnated with Congo Red for chemical sensoring applications. Sensors and Actuators B: Chemical, 2004, 100, 99-102.	4.0	31
69	Chemisorption of NO2at Boron Sites at the Surface of Nanostructured Mesoporous Silicon. Journal of Physical Chemistry B, 2004, 108, 18306-18310.	1.2	12
70	IR study of the acidity of ITQ-2, an "all-surface―zeolitic system. Journal of Catalysis, 2003, 214, 191-199.	3.1	57
71	Reversible Insulator-to-Metal Transition in p+-Type Mesoporous Silicon Induced by the Adsorption of Ammonia. Angewandte Chemie - International Edition, 2003, 42, 5032-5035.	7.2	43
72	Porous silicon in NO2: A chemisorption mechanism for enhanced electrical conductivity. Physica Status Solidi A, 2003, 197, 103-106.	1.7	15

#	Article	IF	CITATIONS
73	Joint FTIR and TPD study of hydrogen desorption from p-type porous silicon. Physica Status Solidi A, 2003, 197, 217-221.	1.7	25
74	Sensing CO2 in a chemically modified porous silicon film. Physica Status Solidi A, 2003, 197, 365-369.	1.7	54
75	Free carriers reactivation in mesoporous p-type silicon by ammonia condensation: an FTIR study. Physica Status Solidi A, 2003, 197, 458-461.	1.7	10
76	An FTIR Study of Zeolite Theta-1. Journal of Physical Chemistry B, 2003, 107, 1258-1262.	1.2	13
77	IR Evidence that Secondary Interactions May Hamper H-Bonding at Protonic Sites in Zeolites. Journal of Physical Chemistry B, 2002, 106, 10518-10522.	1.2	18
78	H-Bond Formation and Proton Transfer in H-MCM-22 Zeolite as Compared to H-ZSM-5 and H-MOR:  An FTIR Study. Journal of Physical Chemistry B, 2002, 106, 1684-1690.	1.2	31
79	Permeability of micelles in surfactant-containing MCM-41 silica as monitored by embedded dye molecules. Chemical Communications, 2001, , 2216-2217.	2.2	40
80	IR detection of NO2 using p+ porous silicon as a high sensitivity sensor. Chemical Communications, 2001, , 2196-2197.	2.2	25
81	Local environment of Boron impurities in porous silicon and their interaction withNO2molecules. Physical Review B, 2001, 64, .	1.1	54
82	Nature and reactivity of Co species in a cobalt-containing beta zeolite: an FTIR study. Catalysis Today, 2001, 70, 107-119.	2.2	47
83	Thermodynamics of Hydrogen Bonding between CO and the Supercage BrÃ,nsted Acid Sites of the H-Y Zeolite â՞' Studies from Variable Temperature IR Spectrometry. European Journal of Inorganic Chemistry, 2001, 2001, 1739-1743.	1.0	31
84	Sulphur poisoning of LaMn1â´'xMgxO3 catalysts for natural gas combustion. Applied Catalysis B: Environmental, 2001, 30, 61-73.	10.8	50
85	Sulphur poisoning of LaMn1â``xMgxO3·yMgO catalysts for methane combustion. Applied Catalysis B: Environmental, 2001, 34, 29-41.	10.8	34
86	Towards a Deeper Comprehension of the Interaction Mechanisms between Mesoporous Silicon and NO2. Physica Status Solidi A, 2000, 182, 465-471.	1.7	14
87	NO2 monitoring at room temperature by a porous silicon gas sensor. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 69-70, 210-214.	1.7	126
88	Voltammetric characterization of structural titanium species in zeotypes. Electrochemistry Communications, 2000, 2, 349-352.	2.3	20
89	Development of a Methane Premixed Catalytic Burner for Household Applications. Industrial & Engineering Chemistry Research, 2000, 39, 24-33.	1.8	23
90	The vibrational spectroscopy of H2, N2, CO and NO adsorbed on the titanosilicate molecular sieve ETS-10. Physical Chemistry Chemical Physics, 1999, 1, 1649-1657.	1.3	121

#	Article	IF	CITATIONS
91	Nitrosylic complexes in Ag(I)–ZSM-5: a comparison with Cu(I)–ZSM-5. Microporous and Mesoporous Materials, 1999, 30, 129-135.	2.2	27
92	FTIR investigation of the interaction at 77 K of diatomic molecular probes on MCM-22 zeolite. Microporous and Mesoporous Materials, 1999, 30, 119-127.	2.2	65
93	New Method for Catalyst Powder Manufacturing Based on Solvent Combustion. Magyar Apróvad Közlemények, 1999, 56, 1435-1442.	1.4	3
94	Heterocycles oligomerization in acidic zeolites: a UV-visible and IR study. Topics in Catalysis, 1999, 8, 279-292.	1.3	32
95	Propene adsorption and reaction on zeolites and pillared clays. Research on Chemical Intermediates, 1999, 25, 111-129.	1.3	3
96	Methane combustion on Mg-doped LaMnO3 perovskite catalysts. Applied Catalysis B: Environmental, 1999, 20, 277-288.	10.8	141
97	Spectroscopic study in the UV-Vis, near and mid IR of cationic species formed by interaction of thiophene, dithiophene and terthiophene with the zeolite H-Y. Physical Chemistry Chemical Physics, 1999, 1, 561-569.	1.3	44
98	Solid state equilibria in the system Al2O3î—,La2O3î—,Cr2O3: Reactivity catalyst/support. Journal of the European Ceramic Society, 1998, 18, 607-611.	2.8	5
99	XANES, EXAFS and FTIR characterization of copper-exchanged mordenite. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 1519-1525.	1.7	92
100	Evidence of the Presence of Two Different Framework Ti(IV) Species in Tiâ^'Silicalite-1 in Vacuo Conditions:Â an EXAFS and a Photoluminescence Study. Journal of Physical Chemistry B, 1998, 102, 6382-6390.	1.2	183
101	Propene oligomerization on H-mordenite: Hydrogen-bonding interaction, chain initiation, propagation and hydrogen transfer studied by temperature-programmed FTIR and UV–VIS spectroscopies. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 1243-1249.	1.7	90
102	FTIR study of CO adsorbed at low temperature on zeolite L Evidence for an ordered distribution of aluminium atoms. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 189-191.	1.7	21
103	XAFS, IR, and UVâ^'Vis Study of the CulEnvironment in Cul-ZSM-5. Journal of Physical Chemistry B, 1997, 101, 344-360.	1.2	345
104	Evolution of Fe3+from Framework to Extra-Framework Species in Fe-Silicate as a Function of the Template Burning Temperature. European Physical Journal Special Topics, 1997, 7, C2-907-C2-908.	0.2	1
105	IR spectroscopy of neutral and ionic hydrogen-bonded complexes formed upon interaction of CH3OH, C2H5OH, (CH3)2O, (C2H5)2O and C4H8O with H-Y, H-ZSM-5 and H-mordenite: comparison with analogous adducts formed on the H-Nafion superacidic membrane. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 4863-4875.	1.7	115
106	FTIR Investigation of the Formation of Neutral and Ionic Hydrogen-Bonded Complexes by Interaction of H-ZSM-5 and H-Mordenite with CH3CN and H2O:Â Comparison with the H-NAFION Superacidic System. The Journal of Physical Chemistry, 1996, 100, 16584-16599.	2.9	165
107	Structure and Reactivity of Framework and Extraframework Iron in Fe-Silicalite as Investigated by Spectroscopic and Physicochemical Methods. Journal of Catalysis, 1996, 158, 486-501.	3.1	604
108	Infrared studies of the interaction of carbon monoxide and dinitrogen with ferrisilicate MFI-type zeolites. Catalysis Letters, 1996, 42, 25-33.	1.4	69

#	Article	IF	CITATIONS
109	The interaction between hydrogen peroxide and metal oxides: EPR investigations. Applied Magnetic Resonance, 1996, 10, 173-192.	0.6	35
110	IR studies of CO and NO adsorbed on well characterized oxide single microcrystals. Catalysis Today, 1996, 27, 403-435.	2.2	127
111	Host- guest interactions in zeolite cavities. Studies in Surface Science and Catalysis, 1995, 97, 213-222.	1.5	29
112	XANES study of Ti and Fe substituted silicalites in presence and in absence of NH3 and comparison with UV-vis, IR and Raman spectra. Nuclear Instruments & Methods in Physics Research B, 1995, 97, 23-27.	0.6	23
113	N2 Adsorption at 77 K on H-Mordenite and Alkali-Metal-Exchanged Mordenites: An IR Study. The Journal of Physical Chemistry, 1995, 99, 11167-11177.	2.9	120
114	Stretching frequencies of cation O adducts in alkaliâ€metal exchanged zeolites: An elementary electrostatic approach. Journal of Chemical Physics, 1995, 103, 3158-3165.	1.2	98
115	Fourier-Transform Infrared Study of CO Adsorbed at 77 K on H-Mordenite and Alkali-Metal-Exchanged Mordenites. Langmuir, 1995, 11, 527-533.	1.6	158
116	Formation of Cul—N2adducts at 298 and 77 K in Cul-ZSM-5: an FTIR investigation. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 3285-3290.	1.7	95
117	CoO–ZnO solid solution as a model to investigate the CO–cation interaction: an FTIR and HRTEM study. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 4445-4450.	1.7	9
118	Chapter 4 Characterization of V2O5-TiO2 Eurocat catalysts by vibrational and electronic spectroscopies. Catalysis Today, 1994, 20, 61-76.	2.2	41
119	Chapter 5.2 EPR characterization of V2O5/TiO2 eurocat catalysts. Catalysis Today, 1994, 20, 87-95.	2.2	11
120	Thermolysis of mixed alums: a route to mesoporous chromia-alumina. Materials Chemistry and Physics, 1993, 34, 214-218.	2.0	6
121	Evidence of stable hydroxyl radicals and other oxygen radical species generated by interaction of hydrogen peroxide with magnesium oxide. The Journal of Physical Chemistry, 1993, 97, 5735-5740.	2.9	57
122	Fourier-transform infrared and Raman spectra of pure and Al-, B-, Ti- and Fe-substituted silicalites: stretching-mode region. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 4123.	1.7	277
123	Ammoximation of Cyclohexanone on Titanium Silicalite: Investigation of the Reaction Mechanism. Studies in Surface Science and Catalysis, 1993, 75, 719-729.	1.5	60
124	DRS UV-Vis and EPR spectroscopy of hydroperoxo and superoxo complexes in titanium silicalite. Catalysis Letters, 1992, 16, 109-115.	1.4	352
125	An EPR study on the formation of the superoxide radical ion on monoclinic zirconia. Materials Chemistry and Physics, 1991, 29, 379-386.	2.0	41