Francesca Alessandrini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7111414/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Immunological effects of adjuvanted lowâ€dose allergoid allergenâ€specific immunotherapy in experimental murine house dust mite allergy. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 907-919.	5.7	6
2	Microbial dysbiosis in a mouse model of atopic dermatitis mimics shifts in human microbiome and correlates with the key proâ€inflammatory cytokines ILâ€4, ILâ€33 and TSLP. Journal of the European Academy of Dermatology and Venereology, 2022, 36, 705-716.	2.4	6
3	Differential effects of lung inflammation on insulin resistance in humans and mice. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 2482-2497.	5.7	3
4	Ragweed plants grown under elevated CO ₂ levels produce pollen which elicit stronger allergic lung inflammation. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 1718-1730.	5.7	35
5	An exhausted phenotype of T H 2 cells is primed by allergen exposure, but not reinforced by allergenâ€specific immunotherapy. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 2827-2839.	5.7	16
6	TGF-β1 Drives Inflammatory Th Cell But Not Treg Cell Compartment Upon Allergen Exposure. Frontiers in Immunology, 2021, 12, 763243.	4.8	13
7	Mimicking Antigen-Driven Asthma in Rodent Models—How Close Can We Get?. Frontiers in Immunology, 2020, 11, 575936.	4.8	29
8	Artemisia pollen is the main vector for airborne endotoxin. Journal of Allergy and Clinical Immunology, 2019, 143, 369-377.e5.	2.9	50
9	<scp>IL</scp> â€4 receptor α blockade prevents sensitization and alters acute and longâ€lasting effects of allergenâ€specific immunotherapy of murine allergic asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 1549-1560.	5.7	33
10	ILâ€10 signaling in dendritic cells is required for tolerance induction in a murine model of allergic airway inflammation. European Journal of Immunology, 2019, 49, 302-312.	2.9	14
11	Pulmonary microRNA profiles identify involvement of Creb1 and Sec14l3 in bronchial epithelial changes in allergic asthma. Scientific Reports, 2017, 7, 46026.	3.3	29
12	Differential Effects of Surface-Functionalized Zirconium Oxide Nanoparticles on Alveolar Macrophages, Rat Lung, and a Mouse Allergy Model. Nanomaterials, 2017, 7, 280.	4.1	24
13	Pro-Inflammatory versus Immunomodulatory Effects of Silver Nanoparticles in the Lung: The Critical Role of Dose, Size and Surface Modification. Nanomaterials, 2017, 7, 300.	4.1	48
14	Specific Surface Modifications of Silica Nanoparticles Diminish Inflammasome Activation and In Vivo Expression of Selected Inflammatory Genes. Nanomaterials, 2017, 7, 355.	4.1	16
15	Improved efficacy of allergen-specific immunotherapy by JAK inhibition in a murine model of allergic asthma. PLoS ONE, 2017, 12, e0178563.	2.5	18
16	IL-12 protects from psoriasiform skin inflammation. Nature Communications, 2016, 7, 13466.	12.8	151
17	Pollen-derived nonallergenic substances enhance Th2-induced IgE production in B cells. Allergy: European Journal of Allergy and Clinical Immunology, 2015, 70, 1450-1460.	5.7	30
18	Pollenâ€derived adenosine is a necessary cofactor for ragweed allergy. Allergy: European Journal of Allergy and Clinical Immunology, 2015, 70, 944-954.	5.7	35

#	Article	IF	CITATIONS
19	Environmental Pollution and Allergy: Historical Aspects. Chemical Immunology and Allergy, 2014, 100, 268-277.	1.7	25
20	Effects of ultrafine particles on the allergic inflammation in the lung of asthmatics: results of a double-blinded randomized cross-over clinical pilot study. Particle and Fibre Toxicology, 2014, 11, 39.	6.2	26
21	Surface modifications of silica nanoparticles are crucial for their inert versus proinflammatory and immunomodulatory properties. International Journal of Nanomedicine, 2014, 9, 2815.	6.7	46
22	Ultrafine particles affect the balance of endogenous pro- and anti-inflammatory lipid mediators in the lung: in-vitro and in-vivo studies. Particle and Fibre Toxicology, 2012, 9, 27.	6.2	34
23	Effects of ultrafine particles-induced oxidative stress on Clara cells in allergic lung inflammation. Particle and Fibre Toxicology, 2010, 7, 11.	6.2	35
24	Specific CD8 T Cells in IgE-mediated Allergy Correlate with Allergen Dose and Allergic Phenotype. American Journal of Respiratory and Critical Care Medicine, 2010, 181, 7-16.	5.6	23
25	Role of Oxidative Stress in Ultrafine Particle–induced Exacerbation of Allergic Lung Inflammation. American Journal of Respiratory and Critical Care Medicine, 2009, 179, 984-991.	5.6	90
26	Total and Regional Deposition of Ultrafine Particles in a Mouse Model of Allergic Inflammation of the Lung. Inhalation Toxicology, 2008, 20, 585-593.	1.6	29
27	Effects of ultrafine carbon particle inhalation on allergic inflammation of the lung. Journal of Allergy and Clinical Immunology, 2006, 117, 824-830.	2.9	147
28	Permeability Barrier Disruption Increases the Level of Serine Palmitoyltransferase in Human Epidermis. Journal of Investigative Dermatology, 2002, 119, 1048-1052.	0.7	17
29	Identification of immunological relevant phenotypes in ENU mutagenized mice. Mammalian Genome, 2000, 11, 526-527.	2.2	22
30	Lung Epithelial CYP1 Activity Regulates Aryl Hydrocarbon Receptor Dependent Allergic Airway Inflammation. Frontiers in Immunology, 0, 13, .	4.8	7