Stefano Decesari

List of Publications by Citations

Source: https://exaly.com/author-pdf/711140/stefano-decesari-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

106 56 11,470 143 h-index g-index citations papers 5.38 12,704 154 7.7 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
143	Biogenically driven organic contribution to marine aerosol. <i>Nature</i> , 2004 , 431, 676-80	50.4	761
142	A European aerosol phenomenology ½ : chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe. <i>Atmospheric Environment</i> , 2004 , 38, 2579-2595	5.3	744
141	Particulate matter, air quality and climate: lessons learned and future needs. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 8217-8299	6.8	462
140	A European aerosol phenomenology [] : physical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe. <i>Atmospheric Environment</i> , 2004 , 38, 2561-2577	5.3	381
139	Water-soluble organic compounds in biomass burning aerosols over Amazonia 1. Characterization by NMR and GC-MS. <i>Journal of Geophysical Research</i> , 2002 , 107, LBA 14-1		368
138	Primary submicron marine aerosol dominated by insoluble organic colloids and aggregates. <i>Geophysical Research Letters</i> , 2008 , 35,	4.9	329
137	Water-soluble organic compounds in biomass burning aerosols over Amazonia 2. Apportionment of the chemical composition and importance of the polyacidic fraction. <i>Journal of Geophysical Research</i> , 2002 , 107, LBA 59-1		313
136	Characterization of water-soluble organic compounds in atmospheric aerosol: A new approach. Journal of Geophysical Research, 2000 , 105, 1481-1489		313
135	The molecular identification of organic compounds in the atmosphere: state of the art and challenges. <i>Chemical Reviews</i> , 2015 , 115, 3919-83	68.1	300
134	Important source of marine secondary organic aerosol from biogenic amines. <i>Environmental Science</i> & <i>amp; Technology</i> , 2008 , 42, 9116-21	10.3	295
133	Advances in characterization of size-resolved organic matter in marine aerosol over the North Atlantic. <i>Journal of Geophysical Research</i> , 2004 , 109,		287
132	Hygroscopic growth and critical supersaturations for mixed aerosol particles of inorganic and organic compounds of atmospheric relevance. <i>Atmospheric Chemistry and Physics</i> , 2006 , 6, 1937-1952	6.8	256
131	Surface tension of atmospheric wet aerosol and cloud/fog droplets in relation to their organic carbon content and chemical composition. <i>Atmospheric Environment</i> , 2000 , 34, 4853-4857	5.3	252
130	Characterization of the organic composition of aerosols from Rondflia, Brazil, during the LBA-SMOCC 2002 experiment and its representation through model compounds. <i>Atmospheric Chemistry and Physics</i> , 2006 , 6, 375-402	6.8	236
129	General overview: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) Integrating aerosol research from nano to global scales. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 13061-13143	6.8	231
128	Chemical features and seasonal variation of fine aerosol water-soluble organic compounds in the Po Valley, Italy. <i>Atmospheric Environment</i> , 2001 , 35, 3691-3699	5.3	230
127	EUCAARI ion spectrometer measurements at 12 European sites lanalysis of new particle formation events. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 7907-7927	6.8	204

126	Atmospheric Brown Clouds in the Himalayas: first two years of continuous observations at the Nepal Climate Observatory-Pyramid (5079 m). <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 7515-7531	6.8	202	
125	Water soluble organic compounds formed by oxidation of soot. <i>Atmospheric Environment</i> , 2002 , 36, 182	7 5.1 837	2202	
124	Seasonal characteristics of the physicochemical properties of North Atlantic marine atmospheric aerosols. <i>Journal of Geophysical Research</i> , 2007 , 112,		173	
123	Direct observation of aqueous secondary organic aerosol from biomass-burning emissions. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10013-8	11.5	170	
122	Surface tension prevails over solute effect in organic-influenced cloud droplet activation. <i>Nature</i> , 2017 , 546, 637-641	50.4	162	
121	Aerosol mass and black carbon concentrations, a two year record at NCO-P (5079 m, Southern Himalayas). <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 8551-8562	6.8	157	
120	Nucleation and growth of new particles in Po Valley, Italy. <i>Atmospheric Chemistry and Physics</i> , 2007 , 7, 355-376	6.8	157	
119	Primary and Secondary Organic Marine Aerosol and Oceanic Biological Activity: Recent Results and New Perspectives for Future Studies. <i>Advances in Meteorology</i> , 2010 , 2010, 1-10	1.7	149	
118	Source attribution of water-soluble organic aerosol by nuclear magnetic resonance spectroscopy. <i>Environmental Science & Environmental Science & Envir</i>	10.3	139	
117	The water-soluble organic component of size-segregated aerosol, cloud water and wet depositions from Jeju Island during ACE-Asia. <i>Atmospheric Environment</i> , 2005 , 39, 211-222	5.3	137	
116	Fossil versus contemporary sources of fine elemental and organic carbonaceous particulate matter during the DAURE campaign in Northeast Spain. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 12067-120	08 ⁸	133	
115	Size-segregated aerosol mass closure and chemical composition in Monte Cimone (I) during MINATROC. <i>Atmospheric Chemistry and Physics</i> , 2004 , 4, 889-902	6.8	126	
114	High frequency new particle formation in the Himalayas. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 15666-71	11.5	122	
113	A simplified model of the water soluble organic component of atmospheric aerosols. <i>Geophysical Research Letters</i> , 2001 , 28, 4079-4082	4.9	121	
112	Chemical composition of PM₁₀ and PM₁ at the high-altitude Himalayan station Nepal Climate Observatory-Pyramid (NCO-P) (5079 m a.s.l.). <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 4583-4596	6.8	119	
111	Comprehensive characterization of PM2.5 aerosols in Singapore. <i>Journal of Geophysical Research</i> , 2003 , 108,		117	
110	Importance of the organic aerosol fraction for modeling aerosol hygroscopic growth and activation: a case study in the Amazon Basin. <i>Atmospheric Chemistry and Physics</i> , 2005 , 5, 3111-3126	6.8	109	
109	Overview of the inorganic and organic composition of size-segregated aerosol in Rondfiia, Brazil, from the biomass-burning period to the onset of the wet season. <i>Journal of Geophysical Research</i> , 2007, 112		108	

108	Simplification of the representation of the organic component of atmospheric particulates. <i>Faraday Discussions</i> , 2005 , 130, 341-62; discussion 363-86, 519-24	3.6	106
107	The ABC-Pyramid Atmospheric Research Observatory in Himalaya for aerosol, ozone and halocarbon measurements. <i>Science of the Total Environment</i> , 2008 , 391, 252-61	10.2	97
106	Mass closure on the chemical species in size-segregated atmospheric aerosol collected in an urban area of the Po Valley, Italy. <i>Atmospheric Chemistry and Physics</i> , 2003 , 3, 623-637	6.8	91
105	Size-resolved aerosol chemical composition over the Italian Peninsula during typical summer and winter conditions. <i>Atmospheric Environment</i> , 2010 , 44, 5269-5278	5.3	88
104	Molecular Characterization of the Water-Soluble Organic Compounds in Fogwater by ESIMS/MS. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	83
103	Marine aerosol chemistry gradients: Elucidating primary and secondary processes and fluxes. <i>Geophysical Research Letters</i> , 2008 , 35, n/a-n/a	4.9	82
102	Chemical characterization of springtime submicrometer aerosol in Po Valley, Italy. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 8401-8421	6.8	79
101	Is chlorophyll-a the best surrogate for organic matter enrichment in submicron primary marine aerosol?. <i>Journal of Geophysical Research D: Atmospheres</i> , 2013 , 118, 4964-4973	4.4	78
100	Primary and secondary marine organic aerosols over the North Atlantic Ocean during the MAP experiment. <i>Journal of Geophysical Research</i> , 2011 , 116, n/a-n/a		77
99	Aerosol chemical characteristics from sampling conducted on the Island of Jeju, Korea during ACE Asia. <i>Atmospheric Environment</i> , 2004 , 38, 2111-2123	5.3	77
98	Surface tensions of multi-component mixed inorganic/organic aqueous systems of atmospheric significance: measurements, model predictions and importance for cloud activation predictions. <i>Atmospheric Chemistry and Physics</i> , 2007 , 7, 2371-2398	6.8	76
97	Combined determination of the chemical composition and of health effects of secondary organic aerosols: the POLYSOA project. <i>Journal of Aerosol Medicine and Pulmonary Drug Delivery</i> , 2008 , 21, 145-	·54 ⁸	74
96	Evidence of a natural marine source of oxalic acid and a possible link to glyoxal. <i>Journal of Geophysical Research</i> , 2011 , 116,		72
95	Aerosol liquid water driven by anthropogenic nitrate: implications for lifetimes of water-soluble organic gases and potential for secondary organic aerosol formation. <i>Environmental Science & Technology</i> , 2014 , 48, 11127-36	10.3	70
94	Formation and growth of nucleated particles into cloud condensation nuclei: model measurement comparison. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 7645-7663	6.8	67
93	Soluble organic compounds in fog and cloud droplets: what have we learned over the past few years?. <i>Atmospheric Research</i> , 2002 , 64, 89-98	5.4	64
92	Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 2853-2881	6.8	62
91	Light absorption properties of brown carbon in the high Himalayas. <i>Journal of Geophysical Research</i> D: Atmospheres, 2016 , 121, 9621-9639	4.4	61

(2007-2002)

90	The influence of the organic aerosol component on CCN supersaturation spectra for different aerosol types. <i>Tellus, Series B: Chemical and Physical Meteorology</i> , 2002 , 54, 74-81	3.3	60
89	Connecting marine productivity to sea-spray via nanoscale biological processes: Phytoplankton Dance or Death Disco?. <i>Scientific Reports</i> , 2015 , 5, 14883	4.9	58
88	Functional group analysis by H NMR/chemical derivatization for the characterization of organic aerosol from the SMOCC field campaign. <i>Atmospheric Chemistry and Physics</i> , 2006 , 6, 1003-1019	6.8	58
87	Size-segregated aerosol chemical composition at a boreal site in southern Finland, during the QUEST project. <i>Atmospheric Chemistry and Physics</i> , 2006 , 6, 993-1002	6.8	56
86	Organic compounds in aerosols from selected European sites Biogenic versus anthropogenic sources. <i>Atmospheric Environment</i> , 2012 , 59, 243-255	5.3	50
85	Significant variations of trace gas composition and aerosol properties at Mt. Cimone during air mass transport from North Africa Lontributions from wildfire emissions and mineral dust. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 4603-4619	6.8	48
84	Fog occurrence and chemical composition in the Po valley over the last twenty years. <i>Atmospheric Environment</i> , 2014 , 98, 394-401	5.3	47
83	Speciation of water-soluble inorganic, organic, and total nitrogen in a background marine environment: Cloud water, rainwater, and aerosol particles. <i>Journal of Geophysical Research</i> , 2011 , 116,		45
82	Identification of humic-like substances (HULIS) in oxygenated organic aerosols using NMR and AMS factor analyses and liquid chromatographic techniques. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 25-45	6.8	43
81	Antarctic sea ice region as a source of biogenic organic nitrogen in aerosols. <i>Scientific Reports</i> , 2017 , 7, 6047	4.9	43
80	Hygroscopic properties of Amazonian biomass burning and European background HULIS and investigation of their effects on surface tension with two models linking H-TDMA to CCNC data. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 5625-5639	6.8	42
79	Determination of the biogenic secondary organic aerosol fraction in the boreal forest by NMR spectroscopy. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 941-959	6.8	42
78	Solubility properties of surfactants in atmospheric aerosol and cloud/fog water samples. <i>Journal of Geophysical Research</i> , 2003 , 108,		41
77	Measurements of the aerosol chemical composition and mixing state in the Po Valley using multiple spectroscopic techniques. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 12109-12132	6.8	39
76	Primary and secondary biomass burning aerosols determined by proton nuclear magnetic resonance (¹H-NMR) spectroscopy during the 2008 EUCAARI campaign in the Po Valley (Italy). <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 5089-5110	6.8	39
75	On the representativeness of coastal aerosol studies to open ocean studies: Mace Head 🗈 case study. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 9635-9646	6.8	39
74	NMR determination of total carbonyls and carboxyls: a tool for tracing the evolution of atmospheric oxidized organic aerosols. <i>Environmental Science & Environmental Science </i>	10.3	38
73	Chemical Characterization and Source Apportionment of Size-Segregated Aerosol Collected at an Urban Site in Sicily. <i>Water, Air, and Soil Pollution</i> , 2007 , 185, 311-321	2.6	37

72	Molecular insights on aging and aqueous-phase processing from ambient biomass burning emissions-influenced Po Valley fog and aerosol. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 13197-13.	2148	35
71	Evidence for ambient dark aqueous SOA formation in the Po Valley, Italy. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 8095-8108	6.8	34
7º	Enhanced toxicity of aerosol in fog conditions in the Po Valley, Italy. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 7721-7731	6.8	30
69	Extensive Soot Compaction by Cloud Processing from Laboratory and Field Observations. <i>Scientific Reports</i> , 2019 , 9, 11824	4.9	29
68	On the Origin of AMS "Cooking Organic Aerosol" at a Rural Site. <i>Environmental Science & Environmental Science & Technology</i> , 2015 , 49, 13964-72	10.3	28
67	Size-resolved aerosol composition at an urban and a rural site in the Po Valley in summertime: implications for secondary aerosol formation. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 10879-1089	7 ^{6.8}	27
66	The impact of biomass burning and aqueous-phase processing on air quality: a multi-year source apportionment study in the Po Valley, Italy. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 1233-1254	6.8	26
65	Chemical Composition of Cloud Water in the Puerto Rican Tropical Trade Wind Cumuli. <i>Water, Air, and Soil Pollution</i> , 2009 , 200, 3-14	2.6	24
64	Simultaneous Detection of Alkylamines in the Surface Ocean and Atmosphere of the Antarctic Sympagic Environment. <i>ACS Earth and Space Chemistry</i> , 2019 , 3, 854-862	3.2	23
63	3-year chemical composition of free tropospheric PM1 at the Mt. Cimone GAW global station ☐ South Europe № 165 m a.s.l <i>Atmospheric Environment</i> , 2014 , 87, 218-227	5.3	23
62	On the water-soluble organic nitrogen concentration and mass size distribution during the fog season in the Po Valley, Italy. <i>Science of the Total Environment</i> , 2014 , 485-486, 103-109	10.2	19
61	High concentrations of sub-3nm clusters and frequent new particle formation observed in the Po Valley, Italy, during the PEGASOS 2012 campaign. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 1919-19	3 6 .8	18
60	The influence of the organic aerosol component on CCN supersaturation spectra for different aerosol types. <i>Tellus, Series B: Chemical and Physical Meteorology</i> , 2002 , 54, 74-81	3.3	18
59	Atmospheric Brown Clouds in the Himalayas: first two years of continuous observations at the Nepal-Climate Observatory at Pyramid (5079 m)		18
58	Organic aerosol evolution and transport observed at Mt. Cimone (2165 m a.s.l.), Italy, during the PEGASOS campaign. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 11327-11340	6.8	17
57	Aerosol mass and black carbon concentrations, two year-round observations at NCO-P (5079 m, Southern Himalayas)		16
56	Partitioning of metals between the aqueous phase and suspended insoluble material in fog droplets. <i>Annali Di Chimica</i> , 2005 , 95, 275-90		14
55	Global Importance of Hydroxymethanesulfonate in Ambient Particulate Matter: Implications for Air Quality. <i>Journal of Geophysical Research D: Atmospheres</i> , 2020 , 125, e2020JD032706	4.4	14

(2020-2017)

54	Ground level ice nuclei particle measurements including Saharan dust events at a Po Valley rural site (San Pietro Capofiume, Italy). <i>Atmospheric Research</i> , 2017 , 186, 116-126	5.4	13
53	Shipborne measurements of Antarctic submicron organic aerosols: an NMR perspective linking multiple sources and bioregions. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 4193-4207	6.8	13
52	Particulate matter, air quality and climate: lessons learned and future needs		12
51	Vertical profiling of aerosol hygroscopic properties in the planetary boundary layer during the PEGASOS campaigns. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 7295-7315	6.8	11
50	In situ physical and chemical characterisation of the EyjafjallajRull aerosol plume in the free troposphere over Italy. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 1075-1092	6.8	11
49	General overview: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) Integrating aerosol research from nano to global scales		11
48	Chemical composition of PM ₁₀ and PM ₁ at the high-altitude Himalayan station Nepal Climate Observatory-Pyramid (NCO-P) (5079 m a.s.l.)		11
47	Identification of levoglucosan and related steroisomers in fog water as a biomass combustion tracer by ESI-MS/MS. <i>Annali Di Chimica</i> , 2004 , 94, 911-9		10
46	Hygroscopic and chemical characterisation of Po Valley aerosol. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 1557-1570	6.8	9
45	Marine and urban influences on summertime PM2.5 aerosol in the Po basin using mobile measurements. <i>Atmospheric Environment</i> , 2015 , 120, 447-454	5.3	9
44	An anion-exchange high-performance liquid chromatography method coupled to total organic carbon determination for the analysis of water-soluble organic aerosols. <i>Journal of Chromatography A</i> , 2007 , 1149, 385-9	4.5	9
43	Atmospheric Ice Nucleating Particle measurements at the high mountain observatory Mt. Cimone (2165[m a.s.l., Italy). <i>Atmospheric Environment</i> , 2017 , 171, 173-180	5.3	8
42	Contribution of Water-Soluble Organic Matter from Multiple Marine Geographic Eco-Regions to Aerosols around Antarctica. <i>Environmental Science & Environmental Science & Envir</i>	10.3	8
41	Characterizing source fingerprints and ageing processes in laboratory-generated secondary organic aerosols using proton-nuclear magnetic resonance (¹H-NMR) analysis and HPLC HULIS determination. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 10405-10421	6.8	8
40	Comment on I Dn the use of anion exchange chromatography for the characterization of water soluble organic carbon I by H. Chang et al <i>Geophysical Research Letters</i> , 2005 , 32,	4.9	8
39	Aerosol Toxins Emitted by Harmful Algal Blooms Susceptible to Complex Air-Sea Interactions. <i>Environmental Science & Environmental Science & Environme</i>	10.3	8
38	Vertical distribution of aerosol optical properties in the Po Valley during the 2012 summer campaigns. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 5371-5389	6.8	8
37	Ultrafine Particle Features Associated with Pro-Inflammatory and Oxidative Responses: Implications for Health Studies. <i>Atmosphere</i> , 2020 , 11, 414	2.7	7

36	Identification of new particle formation events with deep learning. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 9597-9615	6.8	7
35	Results of an interlaboratory comparison of analytical methods for quantification of anhydrosugars and biosugars in atmospheric aerosol. <i>Chemosphere</i> , 2017 , 184, 269-277	8.4	6
34	Size-segregated aerosol mass closure and chemical composition in Monte Cimone (I) during MINATROC		6
33	Linking Marine Biological Activity to Aerosol Chemical Composition and Cloud-Relevant Properties Over the North Atlantic Ocean. <i>Journal of Geophysical Research D: Atmospheres</i> , 2020 , 125, e2019JD032	246	5
32	Extractable iron and organic matter in the suspended insoluble material of fog droplets. <i>Water, Air, and Soil Pollution</i> , 2006 , 174, 303-320	2.6	5
31	Characterization of the organic composition of aerosols from Rondflia, Brazil, during the LBA-SMOCC 2002 experiment and its representation through model compounds		5
30	An evaluation of the performance of a green panel in improving air quality, the case study in a street canyon in Modena, Italy. <i>Atmospheric Environment</i> , 2021 , 247, 118189	5.3	5
29	Zeppelin-led study on the onset of new particle formation in the planetary boundary layer. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 12649-12663	6.8	5
28	EUCAARI ion spectrometer measurements at 12 European sites 🗈 nalysis of new-particle formation ever	nts	4
27	Fossil versus contemporary sources of fine elemental and organic carbonaceous particulate matter during the DAURE campaign in Northeast Spain		4
26	Vertical profiling of aerosol hygroscopic properties in the planetary boundary layer during the PEGASOS campaigns		4
25	Particulate methanesulfonic acid over the central Mediterranean Sea: Source region identification and relationship with phytoplankton activity. <i>Atmospheric Research</i> , 2020 , 237, 104837	5.4	4
24	Historical Changes in Seasonal Aerosol Acidity in the Po Valley (Italy) as Inferred from Fog Water and Aerosol Measurements. <i>Environmental Science & Environmental Science & </i>	10.3	4
23	New particle formation event detection with Mask R-CNN. <i>Atmospheric Chemistry and Physics</i> , 2022 , 22, 1293-1309	6.8	3
22	Chemical characterization of springtime submicrometer aerosol in Po Valley, Italy		2
21	Primary and secondary biomass burning aerosols determined by proton nuclear magnetic resonance (H-NMR) spectroscopy during the 2008 EUCAARI campaign in the Po Valley (Italy)		2
20	Measurements of the aerosol chemical composition and mixing state in the Po Valley using multiple spectroscopic techniques		2
19	Evidence for ambient dark aqueous SOA formation in the Po Valley, Italy		2

18	Significant variations of trace gas composition and aerosol properties at Mt. Cimone during air mass transport from North Africa Itontributions from wildfire emissions and mineral dust		2
17	The impact of biomass burning and aqueous-phase processing on air quality: a multi-year source apportionment study in the Po Valley, Italy 2019 ,		1
16	Characterizing source fingerprints and ageing processes in laboratory-generated secondary organic aerosols using proton-nuclear magnetic resonance (¹H-NMR) analysis and HPLC HULIS determination 2017 ,		1
15	Does the onset of new particle formation occur in the planetary boundary layer? 2013,		1
14	Determination of the biogenic secondary organic aerosol fraction in the boreal forest by AMS and NMR measurements		1
13	Coastal and open ocean aerosol characteristics: investigating the representativeness of coastal aerosol sampling over the North-East Atlantic Ocean		1
12	Hygroscopic properties of Amazonian biomass burning and European background HULIS and investigation of their effects on surface tension with two models linking H-TDMA to CCNC data		1
11	The D . Vittori D bservatory at Mt. Cimone: A l lighthousel f or the Mediterranean Troposphere. <i>SpringerBriefs in Meteorology</i> , 2018 , 1-14		1
10	Investigation of Atmospheric Reactive Gases at Mt. Cimone. SpringerBriefs in Meteorology, 2018, 45-73		1
9	Organic aerosol evolution and transport observed at Mt. Cimone (2165 m a.s.l.), Italy, during the PEGASOS campaign		1
8	Identification of humic-like substances (HULIS) in oxygenated organic aerosols using NMR and AMS factor analyses and liquid chromatographic techniques		1
7	Tropical and Boreal Forest l'Atmosphere Interactions: A Review. <i>Tellus, Series B: Chemical and Physical Meteorology</i> , 2022 , 74, 24-163	3.3	1
6	Chemical composition and radiative forcing of atmospheric aerosols over the high-altitude Western Himalayas of India. <i>Environmental Science and Pollution Research</i> , 2021 , 1	5.1	0
5	Saharan Dust over Italy: Simulations with Regional Air Quality Model BOLCHEM. <i>NATO Security Through Science Series C: Environmental Security</i> , 2008 , 687-688		
4	Similarity Between Aerosol Physicochemical Properties at a Coastal Station and Open Ocean over the North Atlantic 2007 , 1098-1101		
3	Chemical Fluxes in North-east Atlantic Air 2007 , 1064-1069		
2	Aerosol Chemical Composition at the Mt. Cimone WMO/GAW Global Station. <i>SpringerBriefs in Meteorology</i> , 2018 , 99-118		
1	Ground-Based Observing Systems for Atmospheric Aerosol Chemistry and Composition 2011 , 175-187		