Simon McMullan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7111015/publications.pdf Version: 2024-02-01

SIMON MCMILLAN

#	Article	IF	CITATIONS
1	The subfornical organ drives hypertension in polycystic kidney disease via the hypothalamic paraventricular nucleus. Cardiovascular Research, 2022, 118, 1138-1149.	1.8	0
2	Do catecholaminergic TrkC DRG neurons represent a class of cardiovascular enteroceptor?. Cell Reports, 2022, 38, 110082.	2.9	1
3	Changes in intrathoracic pressure, not arterial pulsations, exert the greatest effect on tracer influx in the spinal cord. Fluids and Barriers of the CNS, 2022, 19, 14.	2.4	9
4	Upregulated Angiotensin Ia Receptors in the Hypothalamic Paraventricular Nucleus Sensitize Neuroendocrine Vasopressin Release and Blood Pressure in a Rodent Model of Polycystic Kidney Disease. Neuroendocrinology, 2022, 112, 1200-1213.	1.2	3
5	Polysialic acid in the rat brainstem and thoracolumbar spinal cord: Distribution, cellular location, and comparison with mouse. Journal of Comparative Neurology, 2021, 529, 811-827.	0.9	1
6	A medullary centre for lapping in mice. Nature Communications, 2021, 12, 6307.	5.8	19
7	PreBötzinger complex neurons drive respiratory modulation of blood pressure and heart rate. ELife, 2020, 9, .	2.8	49
8	Neurons in the Intermediate Reticular Nucleus Coordinate Postinspiratory Activity, Swallowing, and Respiratory-Sympathetic Coupling in the Rat. Journal of Neuroscience, 2019, 39, 9757-9766.	1.7	46
9	A Student's Guide to Neural Circuit Tracing. Frontiers in Neuroscience, 2019, 13, 897.	1.4	107
10	On the presence and functional significance of sympathetic premotor neurons with collateralized spinal axons in the rat. Journal of Physiology, 2019, 597, 3407-3423.	1.3	28
11	Somatostatin 2 Receptors in the Spinal Cord Tonically Restrain Thermogenic, Cardiac and Other Sympathetic Outflows. Frontiers in Neuroscience, 2019, 13, 121.	1.4	7
12	Somatostatin 2 Receptor Activation in the Rostral Ventrolateral Medulla Does Not Mediate the Decompensatory Phase of Haemorrhage. Shock, 2018, 50, 331-338.	1.0	1
13	Excessive Respiratory Modulation of Blood Pressure Triggers Hypertension. Cell Metabolism, 2017, 25, 739-748.	7.2	57
14	Neurochemistry of neurons in the ventrolateral medulla activated by hypotension: Are the same neurons activated by glucoprivation?. Journal of Comparative Neurology, 2017, 525, 2249-2264.	0.9	12
15	Mapping and Analysis of the Connectome of Sympathetic Premotor Neurons in the Rostral Ventrolateral Medulla of the Rat Using a Volumetric Brain Atlas. Frontiers in Neural Circuits, 2017, 11, 9.	1.4	37
16	Polysialic Acid Regulates Sympathetic Outflow by Facilitating Information Transfer within the Nucleus of the Solitary Tract. Journal of Neuroscience, 2017, 37, 6558-6574.	1.7	8
17	Somatostatin in the rat rostral ventrolateral medulla: Origins and mechanism of action. Journal of Comparative Neurology, 2016, 524, 323-342.	0.9	18
18	Somatostatin 2a receptors are not expressed on functionally identified respiratory neurons in the ventral respiratory column of the rat. Journal of Comparative Neurology, 2016, 524, 1384-1398.	0.9	8

SIMON MCMULLAN

#	Article	IF	CITATIONS
19	In vitro neuronal depolarization and increased synaptic activity induced by infrared neural stimulation. Biomedical Optics Express, 2016, 7, 3211.	1.5	14
20	Coordinated autonomic and respiratory responses evoked by alerting stimuli: Role of the midbrain colliculi. Respiratory Physiology and Neurobiology, 2016, 226, 87-93.	0.7	16
21	Tonically Active cAMP-Dependent Signaling in the Ventrolateral Medulla Regulates Sympathetic and Cardiac Vagal Outflows. Journal of Pharmacology and Experimental Therapeutics, 2016, 356, 424-433.	1.3	7
22	In Vitro Neuronal Depolarization And Increased Synaptic Activity Induced By Infrared Neural Stimulation. , 2016, , .		0
23	Comparison of noradrenaline, dopamine and serotonin in mediating the tachycardic and thermogenic effects of methamphetamine in the ventral medial prefrontal cortex. Neuroscience, 2015, 295, 209-220.	1.1	13
24	Recording, labeling, and transfection of single neurons in deep brain structures. Physiological Reports, 2015, 3, e12246.	0.7	12
25	Distribution and neurochemical characterization of neurons in the rat ventrolateral medulla activated by glucoprivation. Brain Structure and Function, 2015, 220, 117-134.	1.2	25
26	Disinhibition of the midbrain colliculi unmasks coordinated autonomic, respiratory, and somatomotor responses to auditory and visual stimuli. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 307, R1025-R1035.	0.9	10
27	Orexinergic Activation of Medullary Premotor Neurons Modulates the Adrenal Sympathoexcitation to Hypothalamic Glucoprivation. Diabetes, 2014, 63, 1895-1906.	0.3	43
28	Brain sources of inhibitory input to the rat rostral ventrolateral medulla. Journal of Comparative Neurology, 2013, 521, 213-232.	0.9	53
29	Identification of Spinally Projecting Neurons in the Rostral Ventrolateral Medulla In Vivo. Neuromethods, 2013, , 123-140.	0.2	0
30	Rostroventrolateral medulla neurons with commissural projections provide input to sympathetic premotor neurons: anatomical and functional evidence. European Journal of Neuroscience, 2013, 38, 2504-2515.	1.2	25
31	Noxious somatic stimuli diminish respiratory–sympathetic coupling by selective resetting of the respiratory rhythm in anaesthetized rats. Experimental Physiology, 2012, 97, 1093-1104.	0.9	3
32	Expression and properties of hyperpolarizationâ€activated current in rat dorsal root ganglion neurons with known sensory function. Journal of Physiology, 2012, 590, 4691-4705.	1.3	46
33	HCN1 and HCN2 in Rat DRG Neurons: Levels in Nociceptors and Non-Nociceptors, NT3-Dependence and Influence of CFA-Induced Skin Inflammation on HCN2 and NT3 Expression. PLoS ONE, 2012, 7, e50442.	1.1	68
34	Sympathetic premotor neurones project to and are influenced by neurones in the contralateral rostral ventrolateral medulla of the rat in vivo. Brain Research, 2012, 1439, 34-43.	1.1	16
35	Asymmetrical changes in lumbar sympathetic nerve activity following stimulation of the sciatic nerve in rat. Brain Research, 2011, 1391, 60-70.	1.1	10
36	Patterning of somatosympathetic reflexes reveals nonuniform organization of presympathetic drive from C1 and non-C1 RVLM neurons. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 301, R1112-R1122.	0.9	24

SIMON MCMULLAN

#	Article	IF	CITATIONS
37	The effects of baroreceptor stimulation on central respiratory drive: A review. Respiratory Physiology and Neurobiology, 2010, 174, 37-42.	0.7	26
38	lmmunostaining for the α3 isoform of the Na ⁺ /K ⁺ -ATPase is selective for functionally identified muscle spindle afferents <i>in vivo</i> . Journal of Physiology, 2010, 588, 4131-4143.	1.3	18
39	Somatostatin selectively ablates post-inspiratory activity after injection into the Bötzinger complex. Neuroscience, 2010, 167, 528-539.	1.1	49
40	Differential regulation of the central neural cardiorespiratory system by metabotropic neurotransmitters. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 2537-2552.	1.8	56
41	Effects of baroreceptor activation on respiratory variability in rat. Respiratory Physiology and Neurobiology, 2009, 166, 80-86.	0.7	32
42	METABOTROPIC NEUROTRANSMISSION AND INTEGRATION OF SYMPATHETIC NERVE ACTIVITY BY THE ROSTRAL VENTROLATERAL MEDULLA IN THE RAT. Clinical and Experimental Pharmacology and Physiology, 2008, 35, 508-511.	0.9	21
43	Somatic nerve stimulation evokes qualitatively different somatosympathetic responses in the cervical and splanchnic sympathetic nerves in the rat. Brain Research, 2008, 1217, 139-147.	1.1	23
44	Separation of A- versus C-nociceptive inputs into spinal–brainstem circuits. Neuroscience, 2008, 152, 1076-1085.	1.1	20
45	Neuropeptide Y in the rostral ventrolateral medulla blocks somatosympathetic reflexes in anesthetized rats. Autonomic Neuroscience: Basic and Clinical, 2008, 142, 64-70.	1.4	16
46	Somatostatin 2A Receptor-Expressing Presympathetic Neurons in the Rostral Ventrolateral Medulla Maintain Blood Pressure. Hypertension, 2008, 52, 1127-1133.	1.3	41
47	Circulating angiotensin II attenuates the sympathetic baroreflex by reducing the barosensitivity of medullary cardiovascular neurones in the rat. Journal of Physiology, 2007, 582, 711-722.	1.3	34
48	Spontaneous Pain, Both Neuropathic and Inflammatory, Is Related to Frequency of Spontaneous Firing in Intact C-Fiber Nociceptors. Journal of Neuroscience, 2006, 26, 1281-1292.	1.7	374
49	Midbrain control of spinal nociception discriminates between responses evoked by myelinated and unmyelinated heat nociceptors in the rat. Pain, 2006, 124, 59-68.	2.0	39
50	Spinal dorsal horn neuronal responses to myelinatedversusunmyelinated heat nociceptors and their modulation by activation of the periaqueductal grey in the rat. Journal of Physiology, 2006, 576, 547-556.	1.3	37
51	A monosynaptic connection between baroinhibited neurons in the RVLM and IML in Sprague-Dawley rats. Brain Research, 2006, 1089, 153-161.	1.1	16
52	Intense Isolectin-B4 Binding in Rat Dorsal Root Ganglion Neurons Distinguishes C-Fiber Nociceptors with Broad Action Potentials and High Nav1.9 Expression. Journal of Neuroscience, 2006, 26, 7281-7292.	1.7	226
53	Electrophysiological differences between nociceptive and non-nociceptive dorsal root ganglion neurones in the ratin vivo. Journal of Physiology, 2005, 565, 927-943.	1.3	190
54	trkA Is Expressed in Nociceptive Neurons and Influences Electrophysiological Properties via Nav1.8 Expression in Rapidly Conducting Nociceptors. Journal of Neuroscience, 2005, 25, 4868-4878.	1.7	130

#	Article	IF	CITATIONS
55	A reliable method for the preferential activation of C- or A-fibre heat nociceptors. Journal of Neuroscience Methods, 2004, 138, 133-139.	1.3	48
56	C-Nociceptor Activation of Hypothalamic Neurones and the Columnar Organisation of Their Projections to the Periaqueductal Grey in the Rat. Experimental Physiology, 2002, 87, 123-128.	0.9	15
57	Differential control of first and second pain by the midbrain. , 2002, , 11-13.		0