
Gerald E Nedoluha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7110792/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Decreases in stratospheric water vapor after 2001: Links to changes in the tropical tropopause and the Brewer-Dobson circulation. Journal of Geophysical Research, 2006, 111, .	3.3	273
2	Validation of the Aura Microwave Limb Sounder middle atmosphere water vapor and nitrous oxide measurements. Journal of Geophysical Research, 2007, 112, .	3.3	255
3	Stratospheric water vapor increases over the past half-century. Geophysical Research Letters, 2001, 28, 1195-1198.	4.0	246
4	Interannual Changes of Stratospheric Water Vapor and Correlations with Tropical Tropopause Temperatures. Journals of the Atmospheric Sciences, 2004, 61, 2133-2148.	1.7	232
5	The Network for the Detection of Atmospheric Composition Change (NDACC): history, status and perspectives. Atmospheric Chemistry and Physics, 2018, 18, 4935-4964.	4.9	162
6	Unusual stratospheric transport and mixing during the 2002 Antarctic winter. Geophysical Research Letters, 2003, 30, .	4.0	123
7	Increases in middle atmospheric water vapor as observed by the Halogen Occultation Experiment and the ground-based Water Vapor Millimeter-Wave Spectrometer from 1991 to 1997. Journal of Geophysical Research, 1998, 103, 3531-3543.	3.3	104
8	Australian PyroCb Smoke Generates Synopticâ€ S cale Stratospheric Anticyclones. Geophysical Research Letters, 2020, 47, e2020GL088101.	4.0	92
9	Ground-based measurements of water vapor in the middle atmosphere. Journal of Geophysical Research, 1995, 100, 2927.	3.3	74
10	An evaluation of trends in middle atmospheric water vapor as measured by HALOE, WVMS, and POAM. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	51
11	Measurements of water vapor in the middle atmosphere and implications for mesospheric transport. Journal of Geophysical Research, 1996, 101, 21183-21193.	3.3	46
12	POAM III measurements of dehydration in the Antarctic lower stratosphere. Geophysical Research Letters, 2000, 27, 1683-1686.	4.0	44
13	Measurements of Humidity in the Atmosphere and Validation Experiments (MOHAVE)-2009: overview of campaign operations and results. Atmospheric Measurement Techniques, 2011, 4, 2579-2605.	3.1	41
14	Changes in upper stratospheric CH4and NO2as measured by HALOE and implications for changes in transport. Geophysical Research Letters, 1998, 25, 987-990.	4.0	38
15	Diurnal variations of stratospheric ozone measured by ground-based microwave remote sensing at the Mauna Loa NDACC site: measurement validation and GEOSCCM model comparison. Atmospheric Chemistry and Physics, 2014, 14, 7255-7272.	4.9	38
16	Validation of groundâ€based microwave radiometers at 22 GHz for stratospheric and mesospheric water vapor. Journal of Geophysical Research, 2009, 114, .	3.3	36
17	A comparative study of mesospheric water vapor measurements from the ground-based water vapor millimeter-wave spectrometer and space-based instruments. Journal of Geophysical Research, 1997, 102, 16647-16661.	3.3	30
18	POAM III measurements of dehydration in the Antarctic and comparisons with the Arctic. Journal of Geophysical Research, 2002, 107, SOL 33-1.	3.3	29

#	Article	IF	CITATIONS
19	Middle Atmospheric Water Vapour Radiometer (MIAWARA): Validation and first results of the LAPBIAT Upper Tropospheric Lower Stratospheric Water Vapour Validation Project (LAUTLOS-WAVVAP) campaign. Journal of Geophysical Research, 2005, 110, .	3.3	29
20	Water vapor measurements in the mesosphere from Mauna Loa over solar cycle 23. Journal of Geophysical Research, 2009, 114, .	3.3	29
21	Polar Ozone and Aerosol Measurement III measurements of water vapor in the upper troposphere and lowermost stratosphere. Journal of Geophysical Research, 2002, 107, ACH 7-1-ACH 7-10.	3.3	27
22	A comparison of middle atmospheric water vapor as measured by WVMS, EOSâ€MLS, and HALOE. Journal of Geophysical Research, 2007, 112, .	3.3	25
23	Ground-based microwave measurements of water vapor from the midstratosphere to the mesosphere. Journal of Geophysical Research, 2011, 116, .	3.3	25
24	The SPARC water vapour assessment II: comparison of annual, semi-annual and quasi-biennial variations in stratospheric and lower mesospheric water vapour observed from satellites. Atmospheric Measurement Techniques, 2017, 10, 1111-1137.	3.1	24
25	Total hydrogen budget of the equatorial upper stratosphere. Journal of Geophysical Research, 2010, 115, .	3.3	23
26	POAM measurements of PSCs and water vapor in the 2002 Antarctic vortex. Geophysical Research Letters, 2003, 30, .	4.0	20
27	Reduced ozone loss at the upper edge of the Antarctic Ozone Hole during 2001–2004. Geophysical Research Letters, 2005, 32, .	4.0	19
28	The decrease in mid-stratospheric tropical ozone since 1991. Atmospheric Chemistry and Physics, 2015, 15, 4215-4224.	4.9	18
29	Measurements of middle atmospheric water vapor from low latitudes and midlatitudes in the northern hemisphere, 1995-1998. Journal of Geophysical Research, 1999, 104, 19257-19266.	3.3	16
30	The fourthâ€generation Water Vapor Millimeterâ€Wave Spectrometer. Radio Science, 2012, 47, .	1.6	13
31	Variations in middle atmospheric water vapor from 2004 to 2013. Journal of Geophysical Research D: Atmospheres, 2013, 118, 11,285.	3.3	13
32	The SPARC water vapor assessment II: intercomparison of satellite and ground-based microwave measurements. Atmospheric Chemistry and Physics, 2017, 17, 14543-14558.	4.9	13
33	The SPARC water vapour assessment II: comparison of stratospheric and lower mesospheric water vapour time series observed from satellites. Atmospheric Measurement Techniques, 2018, 11, 4435-4463.	3.1	12
34	The Antarctic ozone hole during 2020. Journal of Southern Hemisphere Earth Systems Science, 2022, 72, 19-37.	1.8	11
35	Ground-based measurements of ClO from Mauna Kea and intercomparisons with Aura and UARS MLS. Journal of Geophysical Research, 2011, 116, .	3.3	10
36	20 years of ClO measurements in the Antarctic lower stratosphere. Atmospheric Chemistry and Physics, 2016, 16, 10725-10734.	4.9	9

Gerald E Nedoluha

#	Article	IF	CITATIONS
37	Ground-based microwave observations of middle atmospheric water vapor in the 1990s. Geophysical Monograph Series, 2000, , 257-270.	0.1	8
38	Polar stratospheric clouds in the 1998–2003 Antarctic vortex: Microphysical modeling and Polar Ozone and Aerosol Measurement (POAM) III observations. Journal of Geophysical Research, 2006, 111, .	3.3	8
39	Validation of longâ€ŧerm measurements of water vapor from the midstratosphere to the mesosphere at two Network for the Detection of Atmospheric Composition Change sites. Journal of Geophysical Research D: Atmospheres, 2013, 118, 934-942.	3.3	7
40	Trajectory mapping of middle atmospheric water vapor by a mini network of NDACC instruments. Atmospheric Chemistry and Physics, 2015, 15, 9711-9730.	4.9	7
41	Study of the dependence of long-term stratospheric ozone trends on local solar time. Atmospheric Chemistry and Physics, 2020, 20, 8453-8471.	4.9	7
42	Microphysical modeling of southern polar dehydration during the 1998 winter and comparison with POAM III observations. Journal of Geophysical Research, 2006, 111, .	3.3	6
43	Re-analysis of ground-based microwave ClO measurements from Mauna Kea, 1992 to early 2012. Atmospheric Chemistry and Physics, 2013, 13, 8643-8650.	4.9	6
44	Antarctic dehydration 1998–2003: Polar Ozone and Aerosol Measurement III (POAM) measurements and Integrated Microphysics and Aerosol Chemistry on Trajectories (IMPACT) results with four meteorological models. Journal of Geophysical Research, 2007, 112, .	3.3	5
45	A comparison of radiosonde and GPS radio occultation measurements with meteorological temperature analyses in the Antarctic vortex, 1998–2004. Journal of Geophysical Research, 2007, 112, .	3.3	4
46	Persistence of upper stratospheric wintertime tracer variability into the Arctic spring and summer. Atmospheric Chemistry and Physics, 2016, 16, 7957-7967.	4.9	3
47	Comparison of Three High Resolution Real-Time Spectrometers for Microwave Ozone Profiling Instruments. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 10045-10056.	4.9	2
48	Comparison of three high resolution real-time spectrometers for microwave ozone profiling instruments. , 2020, , .		2
49	Initial Results and Diurnal Variations Measured by a New Microwave Stratospheric ClO Instrument at Mauna Kea. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033097.	3.3	1