
Andrzej Marcinek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7110394/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transient Species in the Stepwise Interconversion of NADH and NAD+. Accounts of Chemical Research, 2004, 37, 379-386.	7.6	148
2	Mechanism of oxidative conversion of Amplex® Red to resorufin: Pulse radiolysis and enzymatic studies. Free Radical Biology and Medicine, 2016, 95, 323-332.	1.3	108
3	lonic Liquids:  Novel Media for Characterization of Radical Ions. Journal of Physical Chemistry A, 2001, 105, 9305-9309.	1.1	101
4	Reaction between Peroxynitrite and Boronates: EPR Spin-Trapping, HPLC Analyses, and Quantum Mechanical Study of the Free Radical Pathway. Chemical Research in Toxicology, 2011, 24, 687-697.	1.7	87
5	Nitroxyl (HNO) Reacts with Molecular Oxygen and Forms Peroxynitrite at Physiological pH. Journal of Biological Chemistry, 2014, 289, 35570-35581.	1.6	64
6	Evidence for stepwise nitrogen extrusion and ring expansion upon photolysis of phenyl azide. Journal of the American Chemical Society, 1993, 115, 8609-8612.	6.6	62
7	Real-time Measurements of Amino Acid and Protein Hydroperoxides Using Coumarin Boronic Acid. Journal of Biological Chemistry, 2014, 289, 22536-22553.	1.6	61
8	Unusually long lifetimes of the singlet nitrenes derived from 4-azido-2,3,5,6-tetrafluorobenzamides. The Journal of Physical Chemistry, 1994, 98, 412-419.	2.9	59
9	Zinc-Catalyzed Cycloisomerizations. Synthesis of Substituted Furans and Furopyrimidine Nucleosides. Journal of Organic Chemistry, 2008, 73, 5881-5889.	1.7	56
10	Toward selective detection of reactive oxygen and nitrogen species with the use of fluorogenic probes – Limitations, progress, and perspectives. Pharmacological Reports, 2015, 67, 756-764.	1.5	54
11	Hydrogen-Transferred Radical Cations of NADH Model Compounds. 1. Spontaneous Tautomerization. Journal of the American Chemical Society, 2000, 122, 437-443.	6.6	42
12	Characterization of Fluorescein-Based Monoboronate Probe and Its Application to the Detection of Peroxynitrite in Endothelial Cells Treated with Doxorubicin. Chemical Research in Toxicology, 2016, 29, 735-746.	1.7	37
13	Deduction of the activation parameters for ring expansion and intersystem crossing in fluorinated singlet phenylnitrenes. The Journal of Physical Chemistry, 1993, 97, 12674-12677.	2.9	32
14	Mechanistic Aspects of the Oxidative and Reductive Fragmentation ofN-Nitrosoamines:Â A New Method for Generating Nitrenium Cations, Amide Anions, and Aminyl Radicals. Journal of the American Chemical Society, 2007, 129, 3211-3217.	6.6	32
15	Antithrombotic Effects of Pyridinium Compounds Formed from Trigonelline upon Coffee Roasting. Journal of Agricultural and Food Chemistry, 2014, 62, 2853-2860.	2.4	31
16	Direct Observation of NADH Radical Cation Generated in Reactions with One-Electron Oxidants. Journal of Physical Chemistry A, 2003, 107, 9860-9864.	1.1	30
17	1-methylnicotinamide and its structural analog 1,4-dimethylpyridine for the prevention of cancer metastasis. Journal of Experimental and Clinical Cancer Research, 2016, 35, 110.	3.5	29
18	Fluorescent probes for the detection of nitroxyl (HNO). Free Radical Biology and Medicine, 2018, 128, 69-83.	1.3	29

ANDRZEJ MARCINEK

#	Article	IF	CITATIONS
19	Naphthoylenebenzimidazolone dyes as electron transfer photosensitizers for iodonium salt induced cationic photopolymerizations. Dyes and Pigments, 2012, 95, 252-259.	2.0	26
20	Flow Mediated Skin Fluorescence technique reveals remarkable effect of age on microcirculation and metabolic regulation in type 1 diabetes. Microvascular Research, 2019, 124, 19-24.	1.1	25
21	Electronic absorption spectra of aliphatic diamine radical cations. Conformation-dependent charge delocalization. Journal of Physical Organic Chemistry, 1990, 3, 606-610.	0.9	24
22	Structural Aspects and Rearrangement of Radical Cations Generated from NADH Analogues. Journal of the American Chemical Society, 1996, 118, 691-692.	6.6	24
23	Microenvironmental effects in solid-state reactions. Dispersive kinetics of conformation-dependent charge delocalization in aliphatic diamine radical cations. Journal of Physical Organic Chemistry, 1990, 3, 757-759.	0.9	22
24	Valence isomerization of hexamethyl(Dewar benzene) radical cation. Pulse-radiolytic investigation. Journal of the American Chemical Society, 1989, 111, 3098-3099.	6.6	21
25	Sequential Electronâ^'Protonâ^'Electron Transfer in the Radiolytic and Photochemical Oxidation of Thioxanthene and Xanthene. The Journal of Physical Chemistry, 1996, 100, 13539-13543.	2.9	21
26	Dihalide and Pseudohalide Radical Anions as Oxidizing Agents in Nonaqueous Solvents. Journal of Physical Chemistry A, 2010, 114, 861-866.	1.1	21
27	Non-invasive evaluation of microcirculation and metabolic regulation using flow mediated skin fluorescence (FMSF): Technical aspects and methodology. Review of Scientific Instruments, 2019, 90, .	0.6	21
28	Enolization in radical cations of o-methylacetophenone and related species under cryogenic conditions. Journal of the Chemical Society Perkin Transactions II, 1992, , 1353.	0.9	20
29	Disproportionation of Clozapine Radical: A Link between One-Electron Oxidation of Clozapine and Formation of Its Nitrenium Cation. Chemical Research in Toxicology, 2007, 20, 1093-1098.	1.7	20
30	Hydrogen-Transferred Radical Cations of NADH Model Compounds. 2. Sequential Electronâ^'Proton Addition to NAD+. Journal of Physical Chemistry A, 2000, 104, 718-723.	1.1	18
31	Anthralin:  Primary Products of Its Redox Reactions. Journal of Organic Chemistry, 2006, 71, 5312-5319.	1.7	18
32	Spontaneous hydrogen-atom transfer upon ionization: characterization of enol radical cations. Journal of Molecular Structure, 1992, 275, 249-255.	1.8	17
33	Flowmotion Monitored by Flow Mediated Skin Fluorescence (FMSF): A Tool for Characterization of Microcirculatory Status. Frontiers in Physiology, 2020, 11, 702.	1.3	17
34	Radical scavenging and NO-releasing properties of selected Î ² -adrenoreceptor antagonists. Free Radical Research, 2006, 40, 741-752.	1.5	16
35	Radicals and Radical Ions Derived from Indole, Indole-3-carbinol and Diindolylmethane. Journal of Physical Chemistry A, 2010, 114, 6787-6794.	1.1	16
36	Note: Flow mediated skin fluorescence—A novel technique for evaluation of cutaneous microcirculation. Review of Scientific Instruments, 2016, 87, 036111.	0.6	16

Andrzej Marcinek

#	Article	IF	CITATIONS
37	The Radical Cation ofanti-Tricyclooctadiene and Its Rearrangement Products. Chemistry - A European Journal, 2000, 6, 849-857.	1.7	15
38	Hydrogen-Transferred Radical Cations of NADH Model Compounds. 3. 1,8-Acridinediones. Journal of Physical Chemistry A, 2000, 104, 724-728.	1.1	15
39	Color changes accompanying one-electron reduction and oxidation of the azo dyes. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 163, 373-379.	2.0	15
40	Electron Transfer Chemistry of Psoralen and Coumarin Derivatives by Means of Radiolytic and Electrochemical Experiments. Journal of Physical Chemistry A, 1997, 101, 2124-2130.	1.1	14
41	Oxidation of ethidium-based probes by biological radicals: mechanism, kinetics and implications for the detection of superoxide. Scientific Reports, 2020, 10, 18626.	1.6	14
42	Flow-Mediated Skin Fluorescence (FMSF) Technique for Studying Vascular Complications in Type 2 Diabetes. Journal of Diabetes Science and Technology, 2020, 14, 693-694.	1.3	12
43	The Radical Cation ofsyn-Tricyclooctadiene and Its Rearrangement Products. Chemistry - A European Journal, 2000, 6, 858-868.	1.7	11
44	Electron-Transfer-Induced Tautomerization in Methylindanones:Â Electronic Control of the Tunneling Rate for Enolization. Journal of the American Chemical Society, 2001, 123, 2377-2387.	6.6	11
45	Pulse radiolysis and spectrophotometric studies on the binding of organic cations with heparin. Radiation Physics and Chemistry, 2014, 99, 6-11.	1.4	11
46	Decomposition of Piloty's acid derivatives – Toward the understanding of factors controlling HNO release. Archives of Biochemistry and Biophysics, 2019, 661, 132-144.	1.4	11
47	Effect of Heparin on Viologen-Stimulated Enzymatic NADH Depletion. Chemical Research in Toxicology, 2006, 19, 668-673.	1.7	10
48	Assessment of Microcirculatory Status Based on Stimulation of Myogenic Oscillations by Transient Ischemia: From Health to Disease. Vascular Health and Risk Management, 2021, Volume 17, 33-36.	1.0	10
49	Differentiation of Diabetic Foot Ulcers Based on Stimulation of Myogenic Oscillations by Transient Ischemia. Vascular Health and Risk Management, 2021, Volume 17, 145-152.	1.0	10
50	Direct Characterization of Hexamethyl(Dewar Benzene) Radical Cation by Electronic Absorption Spectroscopy. Journal of Physical Chemistry A, 1998, 102, 7761-7764.	1.1	9
51	Electrochemical and photochemical reduction of a series of azobenzene dyes in protic and aprotic solvents. Coloration Technology, 2003, 119, 269-274.	0.7	9
52	The relationship between the electrochemical and photochemical reduction of some azo dyes derived from 2-aminobenzothiazole. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 171, 69-76.	2.0	9
53	Radical scavenging properties of nicotinamide and its metabolites. Radiation Physics and Chemistry, 2008, 77, 259-266.	1.4	9
54	Mechanistic Aspects of Alloxan Diabetogenic Activity:Â A Key Role of Ketoâ^'Enol Inversion of Dialuric Acid on Ionization. Journal of Physical Chemistry A, 2006, 110, 7272-7278.	1.1	8

ANDRZEJ MARCINEK

#	Article	IF	CITATIONS
55	Dimer Radical Cations of Indole and Indole-3-carbinol: Localized and Delocalized Radical Cations of Diindolylmethane. Journal of Physical Chemistry A, 2011, 115, 7700-7708.	1.1	8
56	6-Pyridinium benzo[a]phenazine-5-oxide derivatives as visible photosensitisers for polymerisation. Coloration Technology, 2014, 130, 250-259.	0.7	8
57	New Approach to Non-Invasive Assessment of Vascular Circulation Based on the Response to Transient Ischemia. Vascular Health and Risk Management, 2022, Volume 18, 113-116.	1.0	8
58	Fluorescent probes for monitoring myeloperoxidase-derived hypochlorous acid: a comparative study. Scientific Reports, 2022, 12, .	1.6	8
59	Direct Characterization of Radical Species Generated on One-Electron Oxidation of 3,6-Diamino-10-methylacridan. Journal of Physical Chemistry A, 2001, 105, 875-879.	1.1	7
60	Benzopinacol Radical Cation. Journal of Physical Chemistry A, 2003, 107, 810-814.	1.1	7
61	Mechanistic Aspects of Radiation-Induced Oligomerization of 3,4-Ethylenedioxythiophene in Ionic Liquids. Journal of Physical Chemistry A, 2010, 114, 11552-11559.	1.1	7
62	Can the microcirculatory response to hypoxia be a prognostic factor for Covid-19?. Respiratory Physiology and Neurobiology, 2020, 280, 103478.	0.7	7
63	Photochemical and radiolytic cleavage of 10-methylacridine dimer in solutions and cryogenic glasses. Journal of Physical Organic Chemistry, 1993, 6, 254-256.	0.9	6
64	1-Methyl-3-nitropyridine: An Efficient Oxidant of NADH in Non-enzymatic and Enzyme-mediated Processes. Free Radical Research, 2003, 37, 1157-1162.	1.5	6
65	Isomerization of Cubane Radical Cation. Journal of Physical Chemistry A, 2000, 104, 5265-5268.	1.1	5
66	Can efficient stimulation of myogenic microcirculatory oscillations by transient ischemia predict low incidence of COVID-19 infection?. Respiratory Physiology and Neurobiology, 2021, 286, 103618.	0.7	5
67	Vibrational relaxation in pyridine—benzene and cyclohexane—carbon tetrachloride systems. Chemical Physics Letters, 1984, 108, 245-249.	1.2	4
68	The effects of 1,4-dimethylpyridine in metastatic prostate cancer in mice. BMC Cancer, 2017, 17, 177.	1.1	3
69	A derivative of vitamin B3 applied several days after exposure reduces lethality of severely irradiated mice. Scientific Reports, 2021, 11, 7922.	1.6	3
70	A specific resistance of aminoazo dyes to the oxidative degradation. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 188, 267-271.	2.0	2
71	Benzothiazine Dyes/2,4,6-Tris(trichloromethyl)-1,3,5-triazine as a New Visible Two-Component Photoinitiator System. International Journal of Photoenergy, 2012, 2012, 1-8.	1.4	2
72	N,N.N′,N′-tetramethylhydroethidine (TMHE) - in search for better probes for the detection of superoxide radical anion. Free Radical Biology and Medicine, 2017, 108, S38.	1.3	2

#	Article	IF	CITATIONS
73	4-Methylpseudoproline analogues of cyclolinopeptide A: Synthesis, structural analysis and evaluation of their suppressive effects in selected immunological assays. Peptides, 2020, 132, 170365.	1.2	1
74	Low temperature pulse radiolysis as a method to study fast isomerization processes in molecular cations. International Journal of Radiation Applications and Instrumentation Nuclear Tracks and Radiation Measurements, 1992, 39, 41-44.	0.0	0
75	Transient Species in the Stepwise Interconversion of NADH and NAD+. ChemInform, 2004, 35, no.	0.1	0
76	The Mechanism of the Oxidative Transformation of Boronate Compounds - A Quantum Mechanical Study. Free Radical Biology and Medicine, 2010, 49, S216.	1.3	0