
Paola Brocca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7110307/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hybrid Lipid/Polymer Nanoparticles to Tackle the Cystic Fibrosis Mucus Barrier in siRNA Delivery to the Lungs: Does PEGylation Make the Difference?. ACS Applied Materials & Interfaces, 2022, 14, 7565-7578.	8.0	37
2	Calorimetry of extracellular vesicles fusion to single phospholipid membrane. Biomolecular Concepts, 2022, 13, 148-155.	2.2	2
3	Carbohydrate-carbohydrate interaction drives the preferential insertion of dirhamnolipid into glycosphingolipid enriched membranes. Journal of Colloid and Interface Science, 2022, 616, 739-748.	9.4	4
4	Interferometric detection of hydrodynamic bubble–bubble interactions. Journal of Fluid Mechanics, 2022, 942, .	3.4	4
5	Correction: Structural insights into fusion mechanisms of small extracellular vesicles with model plasma membranes. Nanoscale, 2021, 13, 13158-13158.	5.6	0
6	Structural insights into fusion mechanisms of small extracellular vesicles with model plasma membranes. Nanoscale, 2021, 13, 5224-5233.	5.6	16
7	PEGylated mucus-penetrating nanocrystals for lung delivery of a new FtsZ inhibitor against Burkholderia cenocepacia infection. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 23, 102113.	3.3	32
8	Novel O/W nanoemulsions for nasal administration: Structural hints in the selection of performing vehicles with enhanced mucopenetration. Colloids and Surfaces B: Biointerfaces, 2019, 183, 110439.	5.0	20
9	Mucin Thin Layers: A Model for Mucus-Covered Tissues. International Journal of Molecular Sciences, 2019, 20, 3712.	4.1	10
10	Protein Adsorption at the Air–Water Interface by a Charge Sensing Interferometric Technique. Langmuir, 2019, 35, 16087-16100.	3.5	6
11	Hybrid Lipid/Polymer Nanoparticles for Pulmonary Delivery of siRNA: Development and Fate Upon <i>In Vitro</i> Deposition on the Human Epithelial Airway Barrier. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2018, 31, 170-181.	1.4	52
12	Decoration of Nanovesicles with pH (Low) Insertion Peptide (pHLIP) for Targeted Delivery. Nanoscale Research Letters, 2018, 13, 391.	5.7	16
13	Directional K+ channel insertion in a single phospholipid bilayer: Neutron reflectometry and electrophysiology in the joint exploration of a model membrane functional platform. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 1742-1750.	2.4	13
14	Scattering Techniques and Ganglioside Aggregates: Laser Light, Neutron, and X-Ray Scattering. Methods in Molecular Biology, 2018, 1804, 57-82.	0.9	0
15	Interferometric investigation of the gas-state monolayer of mono-rhamnolipid adsorbing at an oil/water interface. Journal of Molecular Liquids, 2018, 266, 687-691.	4.9	5
16	Water response to ganglioside GM1 surface remodelling. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 3573-3580.	2.4	4
17	Membrane restructuring following in situ sialidase digestion of gangliosides: Complex model bilayers by synchrotron radiation reflectivity. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 845-851.	2.6	5
18	Pathogenic AÎ ² A2V versus protective AÎ ² A2T mutation: Early stage aggregation and membrane interaction. Biophysical Chemistry, 2017, 229, 11-18.	2.8	16

PAOLA BROCCA

#	Article	IF	CITATIONS
19	Building a biomimetic membrane for neutron reflectivity investigation: Complexity, asymmetry and contrast. Biophysical Chemistry, 2017, 229, 135-141.	2.8	16
20	Chitosan-coupled solid lipid nanoparticles: Tuning nanostructure and mucoadhesion. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 110, 13-18.	4.3	57
21	Amyloidβ Peptides in interaction with raft-mime model membranes: a neutron reflectivity insight. Scientific Reports, 2016, 6, 20997.	3.3	31
22	Direct comparison of elastic incoherent neutron scattering experiments with molecular dynamics simulations of DMPC phase transitions. European Physical Journal E, 2016, 39, 48.	1.6	20
23	What the cell surface does not see: The gene vector under the protein corona. Colloids and Surfaces B: Biointerfaces, 2016, 141, 170-178.	5.0	11
24	Niosomes as Drug Nanovectors: Multiscale pH-Dependent Structural Response. Langmuir, 2016, 32, 1241-1249.	3.5	42
25	Doxycycline hinders phenylalanine fibril assemblies revealing a potential novel therapeutic approach in phenylketonuria. Scientific Reports, 2015, 5, 15902.	3.3	33
26	Optimizing the Crowding Strategy: Sugar-Based Ionic Micelles in the Dilute-to-Condensed Regime. Langmuir, 2014, 30, 9157-9164.	3.5	4
27	Multilevel structuring of ganglioside-containing aggregates: From simple micelles to complex biomimetic membranes. Advances in Colloid and Interface Science, 2014, 205, 177-186.	14.7	15
28	Neutrons for rafts, rafts for neutrons. European Physical Journal E, 2013, 36, 73.	1.6	12
29	Mechanistic Understanding of Gene Delivery Mediated by Highly Efficient Multicomponent Envelope-Type Nanoparticle Systems. Molecular Pharmaceutics, 2013, 10, 4654-4665.	4.6	52
30	Nanoscale structure of protamine/DNA complexes for gene delivery. Applied Physics Letters, 2013, 102, .	3.3	16
31	Transient Step-Like Kinetics of Enzyme Reaction on Fragmented-Condensed Substrates. Journal of Physical Chemistry B, 2012, 116, 9570-9579.	2.6	5
32	Ganglioside GM1 forces the redistribution of cholesterol in a biomimetic membrane. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 2860-2867.	2.6	30
33	Nanoscale structural response of gangliosideâ€containing aggregates to the interaction with sialidase. Journal of Neurochemistry, 2011, 116, 833-839.	3.9	13
34	Lamellar Stacking Split by In-Membrane Clustering of Bulky Glycolipids. Langmuir, 2009, 25, 4190-4197.	3.5	7
35	Structural aspects of ganglioside-containing membranes. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 202-208.	2.6	33
36	Hierarchical Ordering of Sugar Based Amphiphiles. Molecular Crystals and Liquid Crystals, 2009, 500, 155-165.	0.9	4

PAOLA BROCCA

#	Article	IF	CITATIONS
37	Structure of Self-Organized Multilayer Nanoparticles for Drug Delivery. Langmuir, 2008, 24, 11378-11384.	3.5	47
38	Intermicellar Interactions May Induce Anomalous Size Behavior in Micelles Carrying out Bulky Heads with Multiple Spatial Arrangements. Langmuir, 2007, 23, 3067-3074.	3.5	14
39	Microscopic Structure of Phospholipid Bilayers:Â Comparison between Molecular Dynamics Simulations and Wide-Angle X-ray Spectra. Journal of Physical Chemistry B, 2007, 111, 2484-2489.	2.6	11
40	Short-Range Structure of a GM3 Ganglioside Membrane:  Comparison between Experimental WAXS and Computer Simulation Results. Journal of Physical Chemistry B, 2007, 111, 10965-10969.	2.6	14
41	Self-assembly in glycolipids. Current Opinion in Colloid and Interface Science, 2007, 12, 148-154.	7.4	51
42	DC13PC bilayers from anomalous swelling to main transition: An X-ray scattering investigation. Journal of Colloid and Interface Science, 2007, 312, 34-41.	9.4	5
43	Curved single-bilayers in the region of the anomalous swelling: Effect of curvature and chain length. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 291, 63-68.	4.7	11
44	Headgroup and chain melting transition in dispersed bilayers of GM3 ganglioside. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 259, 125-133.	4.7	10
45	Dynamics of ganglioside micellar solutions by quasielastic neutron scattering. Physica B: Condensed Matter, 2004, 350, E619-E622.	2.7	9
46	Molecular Dynamics Simulation of a GM3 Ganglioside Bilayer. Journal of Physical Chemistry B, 2004, 108, 20322-20330.	2.6	24
47	Shape Fluctuations of Large Unilamellar Lipid Vesicles Observed by Laser Light Scattering:Â Influence of the Small-Scale Structure. Langmuir, 2004, 20, 2141-2148.	3.5	32
48	Collective phenomena in confined micellar systems of gangliosides. Physica A: Statistical Mechanics and Its Applications, 2002, 304, 177-190.	2.6	12
49	Cooperative behavior of ganglioside molecules in model systems. Neurochemical Research, 2002, 27, 559-563.	3.3	4
50	Modeling ganglioside headgroups by conformational analysis and molecular dynamics. Glycoconjugate Journal, 2000, 17, 283-299.	2.7	39
51	Thermal fluctuations of small vesicles: observation by dynamic light scattering. , 2000, , 181-185.		10
52	Structural Basis for the Resistance of Tay-Sachs Ganglioside GM2 to Enzymatic Degradation. Journal of Biological Chemistry, 1999, 274, 10014-10018.	3.4	33
53	The Structural Basis for the Susceptibility of Gangliosides to Enzymatic Degradation. Bioscience Reports, 1999, 19, 163-168.	2.4	2
54	Sugar Mimics:Â An Artificial Receptor for Cholera Toxin. Journal of the American Chemical Society, 1999, 121, 2032-2036.	13.7	52

PAOLA BROCCA

#	Article	IF	CITATIONS
55	Conformation of the Oligosaccharide Chain of GM1 Ganglioside in a Carbohydrate-Enriched Surface. Biophysical Journal, 1998, 74, 309-318.	0.5	74
56	Metabolic Processing of Gangliosides by Human Fibroblasts in Culture - Formation and Recycling of Separate Pools of Sphingosine. FEBS Journal, 1997, 250, 661-669.	0.2	42
57	Nuclear Overhauser effect investigation on GM1 ganglioside containingN-glycolyl-neuraminic acid (II3Neu5GcGgOse4Cer). Glycoconjugate Journal, 1996, 13, 57-62.	2.7	22
58	lsolation and Structural Characterization of N-Acetyl- and N-Glycolylneuraminic-Acid-Containing GalNAc-GD1a Isomers, IV4GalNAcIV3Neu5AcII3Neu5GcGgOse4Cer and IV4GalNAcIV3Neu5AcII3Neu5AcGgOse4Cer, from Bovine Brain. FEBS Journal, 1995, 234, 786-793.	0.2	13
59	Aggregation properties of semisynthetic GD1a ganglioside (IV3Neu5ACII3Neu5AcGgOse4Cer) containing an acetyl group as acyl moiety. Chemistry and Physics of Lipids, 1995, 77, 41-49.	3.2	17
60	Some Structural Features of Cluster-Coordinating Cysteines of Clostridium pasteurianum Ferredoxin Are Revealed by 2D TOCSY 1H NMR on the Oxidized Protein. Biochemical and Biophysical Research Communications, 1994, 202, 591-595.	2.1	1
61	1H-NMR study on ganglioside amide protons: evidence that the deuterium exchange kinetics are affected by the preparation of samples. Glycoconjugate Journal, 1993, 10, 441-446.	2.7	17