Jacek Kuznicki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/711001/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Siah-1-interacting protein regulates mutated huntingtin protein aggregation in Huntington's disease models. Cell and Bioscience, 2022, 12, 34.	2.1	4
2	npc2-Deficient Zebrafish Reproduce Neurological and Inflammatory Symptoms of Niemann-Pick Type C Disease. Frontiers in Cellular Neuroscience, 2021, 15, 647860.	1.8	8
3	Evolutionary context can clarify gene names: Teleosts as a case study. BioEssays, 2021, 43, e2000258.	1.2	5
4	Biological and Medical Importance of Cellular Heterogeneity Deciphered by Single-Cell RNA Sequencing. Cells, 2020, 9, 1751.	1.8	31
5	Knockout of stim2a Increases Calcium Oscillations in Neurons and Induces Hyperactive-Like Phenotype in Zebrafish Larvae. International Journal of Molecular Sciences, 2020, 21, 6198.	1.8	7
6	Targeting mitochondrial calcium pathways as a potential treatment against Parkinson's disease. Cell Calcium, 2020, 89, 102216.	1.1	22
7	stim2b Knockout Induces Hyperactivity and Susceptibility to Seizures in Zebrafish Larvae. Cells, 2020, 9, 1285.	1.8	11
8	Transgenic Mice Overexpressing Human STIM2 and ORAl1 in Neurons Exhibit Changes in Behavior and Calcium Homeostasis but Show No Signs of Neurodegeneration. International Journal of Molecular Sciences, 2020, 21, 842.	1.8	7
9	STIM Protein-NMDA2 Receptor Interaction Decreases NMDA-Dependent Calcium Levels in Cortical Neurons. Cells, 2020, 9, 160.	1.8	19
10	Changes in Calcium Homeostasis and Gene Expression Implicated in Epilepsy in Hippocampi of Mice Overexpressing ORAI1. International Journal of Molecular Sciences, 2019, 20, 5539.	1.8	13
11	Restriction of mitochondrial calcium overload by <i>mcu</i> inactivation renders neuroprotective effect in Zebrafish models of Parkinson's disease. Biology Open, 2019, 8, .	0.6	45
12	Behavioral and electrophysiological changes in female mice overexpressing ORAI1 in neurons. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 1137-1150.	1.9	13
13	Identification of Zebrafish Calcium Toolkit Genes and their Expression in the Brain. Genes, 2019, 10, 230.	1.0	11
14	Novel calcineurin A (PPP3CA) variant associated with epilepsy, constitutive enzyme activation and downregulation of protein expression. European Journal of Human Genetics, 2019, 27, 61-69.	1.4	26
15	Huntingtin-Associated Protein 1A Regulates Store-Operated Calcium Entry in Medium Spiny Neurons From Transgenic YAC128 Mice, a Model of Huntington's Disease. Frontiers in Cellular Neuroscience, 2018, 12, 381.	1.8	18
16	Neuronal calcium signaling via store-operated channels in health and disease. Cell Calcium, 2018, 74, 102-111.	1.1	67
17	Overexpression of STIM1 in neurons in mouse brain improves contextual learning and impairs long-term depression. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 1071-1087.	1.9	38
18	Knockdown of amyloid precursor protein increases calcium levels in the endoplasmic reticulum. Scientific Reports, 2017, 7, 14512.	1.6	20

#	Article	IF	CITATIONS
19	TCF7L2 mediates the cellular and behavioral response to chronic lithium treatment in animal models. Neuropharmacology, 2017, 113, 490-501.	2.0	13
20	Inhibition of the mitochondrial calcium uniporter rescues dopaminergic neurons in <i>pink1</i> ^{<i>â^'</i>/<i>â^'</i>} zebrafish. European Journal of Neuroscience, 2017, 45, 528-535.	1.2	74
21	ST8SIA2 promotes oligodendrocyte differentiation and the integrity of myelin and axons. Glia, 2017, 65, 34-49.	2.5	17
22	Tetrahydrocarbazoles decrease elevated SOCE in medium spiny neurons from transgenic YAC128 mice, a model of Huntington's disease. Biochemical and Biophysical Research Communications, 2017, 483, 1194-1205.	1.0	23
23	Profile of 6 microRNA in blood plasma distinguish early stage Alzheimer's disease patients from non-demented subjects. Oncotarget, 2017, 8, 16122-16143.	0.8	122
24	AMPA Receptors Are Involved in Store-Operated Calcium Entry and Interact with STIM Proteins in Rat Primary Cortical Neurons. Frontiers in Cellular Neuroscience, 2016, 10, 251.	1.8	32
25	Be Healthy as a Fish Educational Program at the International Institute of Molecular and Cell Biology in Warsaw, Poland. Zebrafish, 2016, 13, 266-271.	0.5	3
26	Microscopic analysis of Orai-mediated store-operated calcium entry in cells with experimentally altered levels of amyloid precursor protein. Biochemical and Biophysical Research Communications, 2016, 478, 1087-1092.	1.0	3
27	Molecular anatomy of the thalamic complex and the underlying transcription factors. Brain Structure and Function, 2016, 221, 2493-2510.	1.2	56
28	Ukrainian science needs elixir of youth. Nature, 2015, 522, 34-34.	13.7	0
29	SOCE in neurons: Signaling or just refilling?. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 1940-1952.	1.9	90
30	Cognitive flexibility and long-term depression (LTD) are impaired following β-catenin stabilization in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8631-8636.	3.3	75
31	Cognitive Performance and Functional Status Are the Major Factors Predicting Survival of Centenarians in Poland. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2014, 69, 1269-1275.	1.7	34
32	FRET-Based Calcium Imaging: A Tool for High-Throughput/Content Phenotypic Drug Screening in Alzheimer Disease. Journal of Biomolecular Screening, 2013, 18, 1309-1320.	2.6	17
33	Alzheimer's Disease Modeling: Ups, Downs, and Perspectives for Human Induced Pluripotent Stem Cells. Journal of Alzheimer's Disease, 2013, 34, 563-588.	1.2	34
34	Analysis of calcium homeostasis in fresh lymphocytes from patients with sporadic Alzheimer's disease or mild cognitive impairment. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 1692-1699.	1.9	27
35	Native <scp>STIM</scp> 2 and <scp>ORAI</scp> 1 proteins form a calciumâ€sensitive and thapsigarginâ€insensitive complex in cortical neurons. Journal of Neurochemistry, 2013, 126, 727-738.	2.1	51
36	Development and Implementation of a High-Throughput Compound Screening Assay for Targeting Disrupted ER Calcium Homeostasis in Alzheimer's Disease. PLoS ONE, 2013, 8, e80645.	1.1	18

#	Article	IF	CITATIONS
37	Expression of genes encoding the calcium signalosome in cellular and transgenic models of Huntington's disease. Frontiers in Molecular Neuroscience, 2013, 6, 42.	1.4	43
38	Highly Pathogenic Alzheimer's Disease Presenilin 1 P117R Mutation Causes a specific Increase in p53 and p21 Protein Levels and Cell Cycle Dysregulation in Human Lymphocytes. Journal of Alzheimer's Disease, 2012, 32, 397-415.	1.2	27
39	Novel β-catenin target genes identified in thalamic neurons encode modulators of neuronal excitability. BMC Genomics, 2012, 13, 635.	1.2	36
40	Cell cycle regulation distinguishes lymphocytes from sporadic and familial Alzheimer's disease patients. Neurobiology of Aging, 2011, 32, 2319.e13-2319.e26.	1.5	29
41	Store-operated calcium entry modulates neuronal network activity in a model of chronic epilepsy. Experimental Neurology, 2011, 232, 185-194.	2.0	65
42	Calmyrin1 binds to SCG10 protein (stathmin2) to modulate neurite outgrowth. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 1025-1037.	1.9	6
43	WNT Protein-independent Constitutive Nuclear Localization of β-Catenin Protein and Its Low Degradation Rate in Thalamic Neurons. Journal of Biological Chemistry, 2011, 286, 31781-31788.	1.6	16
44	Differential Roles for STIM1 and STIM2 in Store-Operated Calcium Entry in Rat Neurons. PLoS ONE, 2011, 6, e19285.	1.1	118
45	Morgana/CHP-1 is a novel chaperone able to protect cells from stress. Biochimica Et Biophysica Acta - Molecular Cell Research, 2010, 1803, 1043-1049.	1.9	23
46	LEF1/β-Catenin Complex Regulates Transcription of the Cav3.1 Calcium Channel Gene (<i>Cacna1g</i>) in Thalamic Neurons of the Adult Brain. Journal of Neuroscience, 2010, 30, 4957-4969.	1.7	55
47	Presenilin-dependent expression of STIM proteins and dysregulation of capacitative Ca2+ entry in familial Alzheimer's disease. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 1050-1057.	1.9	75
48	Expression of STIM1 in brain and puncta-like co-localization of STIM1 and ORAI1 upon depletion of Ca2+ store in neurons. Neurochemistry International, 2009, 54, 49-55.	1.9	91
49	The ER and ageing II: Calcium homeostasis. Ageing Research Reviews, 2009, 8, 160-172.	5.0	64
50	Biochemical characterization and expression analysis of a novel EF-hand Ca2+ binding protein calmyrin2 (Cib2) in brain indicates its function in NMDA receptor mediated Ca2+ signaling. Archives of Biochemistry and Biophysics, 2009, 487, 66-78.	1.4	33
51	Immunolocalization of STIM1 in the mouse brain. Acta Neurobiologiae Experimentalis, 2009, 69, 413-28.	0.4	47
52	Calcium ions in neuronal degeneration. IUBMB Life, 2008, 60, 575-590.	1.5	261
53	Involvement of S100A6 (calcyclin) and its binding partners in intracellular signaling pathways. Advances in Enzyme Regulation, 2008, 48, 225-239.	2.9	28
54	The mammalian CHORD ontaining protein melusin is a stress response protein interacting with Hsp90 and Sgt1. FEBS Letters, 2008, 582, 1788-1794.	1.3	46

#	Article	IF	CITATIONS
55	Polish Centenarians Programme – Multidisciplinary studies of successful ageing: Aims, methods, and preliminary results. Experimental Gerontology, 2008, 43, 238-244.	1.2	21
56	Calcium dysregulation in Alzheimer's disease. Neurochemistry International, 2008, 52, 621-633.	1.9	176
57	Variation in NPC1, the gene encoding Niemann–Pick C1, a protein involved in intracellular cholesterol transport, is associated with Alzheimer disease and/or aging in the Polish population. Neuroscience Letters, 2008, 447, 153-157.	1.0	29
58	Sgt1 has co-chaperone properties and is up-regulated by heat shock. Biochemical and Biophysical Research Communications, 2008, 370, 179-183.	1.0	31
59	Biochemical properties of endogenous presenilin 1 and presenilin 2 in cultured human B-lymphocytes. Clinical Chemistry and Laboratory Medicine, 2007, 45, 1273-6.	1.4	3
60	Hsp70 is a new target of Sgt1—an interaction modulated by S100A6. Biochemical and Biophysical Research Communications, 2007, 357, 1148-1153.	1.0	51
61	Epigenetic Control of the S100A6 (Calcyclin) Gene Expression. Journal of Investigative Dermatology, 2007, 127, 2307-2314.	0.3	22
62	CacyBP/SIP interacts with tubulin in neuroblastoma NB2a cells and induces formation of globular tubulin assemblies. Biochimica Et Biophysica Acta - Molecular Cell Research, 2007, 1773, 1628-1636.	1.9	37
63	Association study of cholesterol-related genes in Alzheimer's disease. Neurogenetics, 2007, 8, 179-188.	0.7	47
64	Two novel presenilin 1 gene mutations connected with frontotemporal dementia-like clinical phenotype: Genetic and bioinformatic assessment. Experimental Neurology, 2006, 200, 82-88.	2.0	57
65	Ca2+-independent binding and cellular expression profiles question a significant role of calmyrin in transduction of Ca2+-signals to Alzheimer's disease-related presenilin 2 in forebrain. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2006, 1762, 66-72.	1.8	18
66	Density of Sgt1-immunopositive neurons is decreased in the cerebral cortex of Alzheimer's disease brain. Neurochemistry International, 2006, 49, 487-493.	1.9	21
67	Binding and functional characteristics of two E-box motifs within the S100A6 (calcyclin) gene promoter. Journal of Cellular Biochemistry, 2006, 97, 1017-1024.	1.2	5
68	Characterization of calretinin I-II as an EF-hand, Ca2+, H+-sensing domain. Protein Science, 2005, 14, 1879-1887.	3.1	6
69	Calcyclin (S100A6) expression is stimulated by agents evoking oxidative stress via the antioxidant response element. Biochimica Et Biophysica Acta - Molecular Cell Research, 2005, 1744, 29-37.	1.9	40
70	The Modular Structure of SIP Facilitates Its Role in Stabilizing Multiprotein Assemblies,. Biochemistry, 2005, 44, 9462-9471.	1.2	37
71	Genetic alterations in accelerated ageing syndromes. International Journal of Biochemistry and Cell Biology, 2005, 37, 947-960.	1.2	47
72	Human Sgt1 Binds HSP90 through the CHORD-Sgt1 Domain and Not the Tetratricopeptide Repeat Domain. Journal of Biological Chemistry, 2004, 279, 16511-16517.	1.6	107

#	Article	IF	CITATIONS
73	Calretinin gene promoter activity is differently regulated in neurons and cancer cells. Role of AP2-like cis element and zinc ions. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2004, 1678, 14-21.	2.4	10
74	The E318G substitution in PSEN1 gene is not connected with Alzheimer's disease in a large Polish cohort. Neuroscience Letters, 2004, 357, 167-170.	1.0	13
75	Calretinin and calbindin D28k have different domain organizations. Protein Science, 2003, 12, 180-184.	3.1	26
76	Mutations in presenilin 1, presenilin 2 and amyloid precursor protein genes in patients with early-onset Alzheimer's disease in Poland. Experimental Neurology, 2003, 184, 991-996.	2.0	83
77	Strong association between Saitohin gene polymorphism and tau haplotype in the Polish population. Neuroscience Letters, 2003, 348, 163-166.	1.0	21
78	Calcium-regulated Interaction of Sgt1 with S100A6 (Calcyclin) and Other S100 Proteins. Journal of Biological Chemistry, 2003, 278, 26923-26928.	1.6	71
79	Mutation Screening of the <i>MAPT</i> and <i>STH</i> Genes in Polish Patients with Clinically Diagnosed Frontotemporal Dementia. Dementia and Geriatric Cognitive Disorders, 2003, 16, 126-131.	0.7	15
80	Ca2+-dependent Translocation of the Calcyclin-binding Protein in Neurons and Neuroblastoma NB-2a Cells. Journal of Biological Chemistry, 2002, 277, 21103-21109.	1.6	51
81	CacyBP/SIP, a Calcyclin and Siah-1-interacting Protein, Binds EF-hand Proteins of the S100 Family. Journal of Biological Chemistry, 2002, 277, 28848-28852.	1.6	126
82	AP2-like cis element is required for calretinin gene promoter activity in cells of neuronal phenotype differentiated from multipotent human cell line DEV. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2002, 1577, 412-420.	2.4	12
83	Structural and biochemical characterization of neuronal calretinin domain I-II (residues 1-100). FEBS Journal, 2001, 268, 6229-6237.	0.2	20
84	CacyBP IS PRESENT IN NEURONS OF RAT BRAIN. Biochemical Society Transactions, 2000, 28, A443-A443.	1.6	0
85	Upstream stimulatory factor is involved in the regulation of the human calcyclin (S100A6) gene. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2000, 1517, 73-81.	2.4	20
86	Characterization of the Interaction of Calcyclin (S100A6) and Calcyclin-binding Protein. Journal of Biological Chemistry, 2000, 275, 31178-31182.	1.6	40
87	Calcyclin (S100A6) Binding Protein (CacyBP) Is Highly Expressed in Brain Neurons. Journal of Histochemistry and Cytochemistry, 2000, 48, 1195-1202.	1.3	49
88	Measurements of [Ca2+] using fura-2 in glioma C6 cells expressing calretinin with GFP as a marker of transfection: no Ca2+-buffering provided by calretinin. Biochimica Et Biophysica Acta - Molecular Cell Research, 1999, 1449, 169-177.	1.9	15
89	Use of Pichia pastoris for the Expression, Purification, and Characterization of Rat Calretinin "EF-Hand―Domains. Protein Expression and Purification, 1999, 17, 465-476.	0.6	8
90	A model for target protein binding to calcium-activated S100 dimers. FEBS Letters, 1998, 421, 175-179.	1.3	21

JACEK KUZNICKI

#	ARTICLE	IF	CITATIONS
91	Molecular Cloning and Expression of a Mouse Brain cDNA Encoding a Novel Protein Target of Calcyclin. Journal of Neurochemistry, 1998, 70, 1793-1798.	2.1	87
92	The mouse calretinin gene promoter region: structural and functional components. Molecular Brain Research, 1997, 49, 175-187.	2.5	11
93	Conformational changes and calcium binding by calretinin and its recombinant fragments containing different sets of EF hand motifs. Biochemistry, 1995, 34, 15389-15394.	1.2	21
94	Distribution of Calretinin, Calbindin D28k, and Parvalbumin in Subcellular Fractions of Rat Cerebellum: Effects of Calcium. Journal of Neurochemistry, 1995, 65, 381-388.	2.1	71
95	Calcyclin from mouse Ehrlich ascites tumor cells and rabbit lung form non-covalent dimers. BBA - Proteins and Proteomics, 1994, 1209, 248-252.	2.1	16
96	Distribution and Level of Calcyclin in Normal Rat Tissues and in Experimentally Induced Liver Cirrhosis Biliaris Acta Histochemica Et Cytochemica, 1994, 27, 205-218.	0.8	6
97	Characterization of calcyclin fragments obtained by CNBr-cleavage. International Journal of Biochemistry & Cell Biology, 1993, 25, 999-1007.	0.8	4
98	Calcyclin as a Marker of Intrahepatic Biliary Ducts in Transplanted Livers Acta Histochemica Et Cytochemica, 1993, 26, 397-404.	0.8	4
99	Calcyclin—Ca2+-binding protein homologous to glial S-100β is present in neurones. NeuroReport, 1993, 4, 383-386.	0.6	49
100	Calcyclinfrom basic research to clinical implications. Acta Biochimica Polonica, 1993, 40, 321-7.	0.3	3
101	Characterization of the cell-cycle-regulated protein calcyclin from Ehrlich ascites tumor cells. Identification of two binding proteins obtained by Ca2+-dependent affinity chromatography. FEBS Journal, 1991, 195, 795-800.	0.2	51
102	Calcyclin, from Gene to Protein. , 1991, , 157-167.		1
103	Calcyclin is a calcium and zinc binding protein. FEBS Letters, 1990, 264, 263-266.	1.3	54
104	Calcyclin-Like Protein from Ehrlich Ascites Tumour Cells - Ca2+ -Binding Properties, Distribution and Target Protein. Advances in Experimental Medicine and Biology, 1990, 269, 149-152.	0.8	1
105	Calcyclin-like protein from Ehrlich ascites tumour cells. Ca2+ and Zn2+ binding, distribution and target protein. Acta Biochimica Polonica, 1990, 37, 99-101.	0.3	1
106	Tissue specific distribution of calcyclin - 10.5 kDa Ca2+-binding protein. FEBS Letters, 1989, 254, 141-144.	1.3	53
107	Phosphorylation of myosin in smooth muscle and non-muscle cells. In vitro and in vivo effects. International Journal of Biochemistry & Cell Biology, 1988, 20, 559-568.	0.8	8

Purification of myosin from ehrlich ascites tumour cells (phosphorylation of its light chain and) Tj ETQq0 0 0 rgBT / $O_{0.8}^{Overlock}$ 10 Tf 50 62

Jacek Kuznicki

#	Article	IF	CITATIONS
109	Phosphorylation of myosin in non-muscle and smooth muscle cells. FEBS Letters, 1986, 204, 169-176.	1.3	24
110	Comparison of the actin binding and filament formation properties of phosphorylated and dephosphorylated Acanthamoeba myosin II. Biochemistry, 1982, 21, 6910-6915.	1.2	92
111	Distribution of troponin C and protein activator of 3′,5′-cyclic nucleotide phosphodiesterase in vertebrate tissues. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1978, 60, 1-6.	0.2	9
112	Identification of Ca2+-binding subunit of myosin light chain kinase from skeletal muscle with modulator protein. FEBS Letters, 1978, 90, 301-304.	1.3	25
113	Similarity in Ca2+-induced changes between troponin-C and protein activator of 3′:5′-cyclic nucleotide phosphodiesterase and their tryptic fragments. Biochimica Et Biophysica Acta - Biomembranes, 1977, 485, 124-133.	1.4	97
114	Characterization of tryptic fragments obtained from bovine brain protein modulator of cyclic nucleotide phosphodiesterase. Journal of Biological Chemistry, 1977, 252, 7440-3.	1.6	91
115	Higher <i>ATM</i> expression in lymphoblastoid cell lines from centenarian compared with younger women. Drug Development Research, 0, , .	1.4	2