
Edward Clennan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7109603/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Aromatic Endoperoxides ^{â€} . Photochemistry and Photobiology, 2023, 99, 204-220.	2.5	3
2	Computational and cyclic voltammetry studies of high effective-molarity assisted reversible reductions of [4]- and [5]heli-viologens: Potential building blocks for new materials. Tetrahedron, 2019, 75, 2965-2970.	1.9	1
3	Origin of the Preferential Formation of Helicenes in Mallory Photocyclizations. Temperature as a Tool to Influence Reaction Regiochemistry. Journal of Organic Chemistry, 2019, 84, 817-830.	3.2	8
4	Synthesis, reactivity, and sulfide quenching of helical viologens. Phosphorus, Sulfur and Silicon and the Related Elements, 2017, 192, 222-226.	1.6	6
5	Synthesis, computational, and photophysical characterization of diaza-embedded [4]helicenes and pseudo[4]helicenes and their pyridinium and viologen homologues. Tetrahedron, 2017, 73, 508-518.	1.9	15
6	Synthesis, Structure, and Photochemical Behavior of [5]Heli-viologen Isomers. Journal of Organic Chemistry, 2016, 81, 5474-5486.	3.2	27
7	Regiochemistry and substituent effects on pyrylogen and thiopyrylogen stability and electronic character. Canadian Journal of Chemistry, 2015, 93, 414-421.	1.1	1
8	Viologen embedded polyaromatic hydrocarbons (VPAH2+): synthesis, computational, photophysical, and electrochemical characterizations of 3,8-diazaphenanthrenyl viologens. Tetrahedron Letters, 2015, 56, 5591-5594.	1.4	4
9	Synthesis, Characterization, Photophysics and Photochemistry of Pyrylogen Electron Transfer Sensitizers. Photochemistry and Photobiology, 2014, 90, 344-357.	2.5	5
10	Photophysical and Electrochemical Characterization of a Helical Viologen, <i>N</i> , <i>N</i> ′-Dimethyl-5,10-diaza[5]helicene. Organic Letters, 2014, 16, 4610-4613.	4.6	20
11	Photooxygenations of Sulfur Compounds. , 2012, , 789-808.		0
12	Dehydration of Methylcyclohexanol Isomers in the Undergraduate Organic Laboratory and Product Analysis by Gas Chromatographyâ~'Mass Spectroscopy (GCâ^'MS). Journal of Chemical Education, 2011, 88, 646-648.	2.3	8
13	Hydrolytic Stability ofN-Methyl-2,6-dimesityl-4,4′-Pyrylogen Bis-tetrafluoroborate. Journal of Organic Chemistry, 2011, 76, 7175-7179.	3.2	5
14	Synthesis, structural, electrochemical, and photophysical properties of 4,2′â€ŧhiopyrylogens – a novel class of sensitizers for photoinduced electron transfer reactions. Journal of Physical Organic Chemistry, 2011, 24, 22-28.	1.9	4
15	A new free and immobilized pyrylogen electron transfer sensitizer. Tetrahedron Letters, 2010, 51, 1249-1251.	1.4	5
16	Computational and experimental evidence for the first direct spectroscopic detection of the pyrylogen neutral redox partner. Photochemical and Photobiological Sciences, 2010, 9, 796-800.	2.9	6
17	Syntheses and Properties of the New Electron Transfer Sensitizers 4,2′-Pyrylogens. Organic Letters, 2009, 11, 685-688.	4.6	9
18	Synthesis, photophysical, and electrochemical properties of the sulfur analogs of the new 4,4′-pyrylogen electron transfer sensitizers. Journal of Sulfur Chemistry, 2009, 30, 212-224.	2.0	7

#	Article	IF	CITATIONS
19	Role of Sulfide Radical Cations in Electron Transfer Promoted Molecular Oxygenations at Sulfur. Journal of the American Chemical Society, 2008, 130, 4057-4068.	13.7	21
20	Pyrylogens: Synthesis, Structural, Electrochemical, and Photophysical Characterization of a New Class of Electron Transfer Sensitizers. Journal of the American Chemical Society, 2008, 130, 7552-7553.	13.7	26
21	Photooxygenation of 1,5-Thiaselenocane. Journal of Organic Chemistry, 2008, 73, 8587-8590.	3.2	7
22	Discovering Electronic Effects of Substituents in Nitrations of Benzene Derivatives Using GC–MS Analysis. Journal of Chemical Education, 2007, 84, 1679.	2.3	0
23	Experimental and Computational Studies of Nuclear Substituted 1,1â€~-Dimethyl-2,2â€~-Bipyridinium Tetrafluoroborates. Journal of Physical Chemistry A, 2007, 111, 13567-13574.	2.5	29
24	Mechanisms of oxygenations in zeolites. Advances in Physical Organic Chemistry, 2007, 42, 225-269.	0.5	4
25	Conformationally induced electrostatic stabilization (CIES) of persulfoxides. A comparison to homologous sulfoxides. Heteroatom Chemistry, 2007, 18, 591-599.	0.7	4
26	Syntheses, Characterizations, and Properties of Electronically Perturbed 1,1â€~-Dimethyl-2,2â€~-bipyridinium Tetrafluoroborates. Journal of Organic Chemistry, 2006, 71, 315-319.	3.2	23
27	Natural Bond Orbital Analyses of Persulfoxide Stabilization by Remote Functional Groups. The Conformationally Induced Electrostatic Stabilization Sulfide Photooxygenation Mechanism. Journal of Organic Chemistry, 2006, 71, 1247-1250.	3.2	8
28	The hydroperoxysulfonium ylide. An aberration or a ubiquitous intermediate?. Tetrahedron, 2006, 62, 10724-10728.	1.9	12
29	A Comparison of Intrazeolite and Solution Singlet Oxygen Ene Reactions of Allylic Alcohols. Photochemistry and Photobiology, 2006, 82, 1226.	2.5	12
30	Advances in singlet oxygen chemistry. Tetrahedron, 2005, 61, 6665-6691.	1.9	407
31	A GC–MS Analysis of an SN2 Reaction for the Organic Laboratory. Journal of Chemical Education, 2005, 82, 1676.	2.3	8
32	Conformationally Induced Electrostatic Stabilization of Persulfoxides:Â A New Suggestion for Inhibition of Physical Quenching of Singlet Oxygen by Remote Functional Groups. Journal of the American Chemical Society, 2005, 127, 11819-11826.	13.7	34
33	Viologen embedded zeolites. Coordination Chemistry Reviews, 2004, 248, 477-492.	18.8	73
34	A Novel Zeolite-Induced Population of a Planar Viologen Conformation. New Viologen Charge Transfer Complexes and Alkene/Viologen/Zeolite Arrays. Journal of Physical Chemistry B, 2004, 108, 4673-4678.	2.6	9
35	Zeolite-Promoted Oxidations of 1,1-Diarylethylenes. Organic Letters, 2003, 5, 4979-4982.	4.6	29
36	lsotope Effects as Mechanistic Probes in Solution and in Intrazeolite Photooxygenations. The Formation of a Hydroperoxysulfonium Ylide. Journal of Organic Chemistry, 2003, 68, 5174-5179.	3.2	8

#	Article	IF	CITATIONS
37	Intrazeolite Photooxidations of Electron-Poor Alkenes. Journal of Organic Chemistry, 2002, 67, 3975-3978.	3.2	19
38	A New Experimental Protocol for Intrazeolite Photooxidations. The First Product-Based Estimate of an Upper Limit for the Intrazeolite Singlet Oxygen Lifetime. Journal of the American Chemical Society, 2002, 124, 11236-11237.	13.7	38
39	The First Example of a Singlet Oxygen Induced Double Bond Migration during Sulfide Photooxidation. Experimental Evidence for Sulfone Formation via a Hydroperoxy Sulfonium Ylide. Journal of Organic Chemistry, 2002, 67, 1036-1037.	3.2	16
40	Mechanistic Organic Chemistry in a Microreactor. Zeolite-Controlled Photooxidations of Organic Sulfides. Journal of Organic Chemistry, 2002, 67, 9368-9378.	3.2	43
41	Persulfoxide:Â Key Intermediate in Reactions of Singlet Oxygen with Sulfides. Accounts of Chemical Research, 2001, 34, 875-884.	15.6	189
42	Substituent-Dictated Partitioning of Intermediates on the Sulfide Singlet Oxygen Reaction Surface. A New Mechanism for Oxidative Câ^'S Bond Cleavage in α-Hydroperoxy Sulfides. Journal of the American Chemical Society, 2001, 123, 4966-4973.	13.7	39
43	New Mechanistic and Synthetic Aspects of Singlet Oxygen Chemistry. Tetrahedron, 2000, 56, 9151-9179.	1.9	223
44	Photochemical Reactions in the Interior of a Zeolite. Part 5: The Origin of the Zeolite Induced Regioselectivity in the Singlet Oxygen Ene Reaction. Tetrahedron, 2000, 56, 6945-6950.	1.9	33
45	Relative Reactivities of Tethered Functional Groups in the Interior of a Zeolite. Organic Letters, 2000, 2, 437-440.	4.6	13
46	A New Mechanism for Oxidative Câ^'S Bond Cleavage during Reactions of Singlet Oxygen with Organic Sulfides:Â Electronically Dictated Reaction Selectivity in the Persulfoxide Intermediate. Journal of the American Chemical Society, 2000, 122, 1834-1835.	13.7	25
47	Photooxidations in zeolites. Part 2: A new mechanistic model for reaction selectivity in singlet oxygen ene reactions in zeolitic media. Tetrahedron Letters, 1999, 40, 5275-5278.	1.4	34
48	The reactions of singlet oxygen with β-chlorosulfides. The role of hydroperoxy sulfonium ylides in the oxidative destruction of chemical warfare simulants. Tetrahedron Letters, 1999, 40, 6519-6522.	1.4	19
49	Spontaneous oxidation of a sulfide in zeolite CaY: the unprecedented reaction of a sulfide radical cation with oxygen. Chemical Communications, 1999, , 2261-2262.	4.1	7
50	Organic Reactions in Zeolites. 1. Photooxidations of Sulfides in Methylene Blue Doped Zeolite Y. Journal of the American Chemical Society, 1999, 121, 2915-2916.	13.7	33
51	The Reactions of O2(1î"g) with Anancomeric 1,3-Dithianes. The First Experimental Evidence in Support of a Hydroperoxy Sulfonium Ylide as a Precursor to Sulfoxide on the Sulfide Singlet Oxygen Reaction Surface. Journal of Organic Chemistry, 1999, 64, 5620-5625.	3.2	35
52	RECENT PROGRESS IN THE SYNTHESIS, PROPERTIES AND REACTIONS OF TRISULFANES AND THEIR OXIDES. Organic Preparations and Procedures International, 1998, 30, 551-600.	1.3	33
53	Trapping of peroxidic intermediates with sulfur and phosphorus centered electrophiles. Heteroatom Chemistry, 1998, 9, 51-56.	0.7	10
54	First experimental evidence for the formation of a silicate anion by intramolecular addition of a persulfoxide to a trimethylsiloxy group. Tetrahedron Letters, 1998, 39, 6827-6830.	1.4	5

#	Article	IF	CITATIONS
55	Reaction of Organic Sulfides with Singlet Oxygen. A Revised Mechanism. Journal of the American Chemical Society, 1998, 120, 4439-4449.	13.7	134
56	Experimental and Computational Evidence for the Formation of Iminopersulfinic Acids. Journal of Organic Chemistry, 1998, 63, 3397-3402.	3.2	12
57	Experimental andab InitioComputational Evidence for New Peroxidic Intermediates (Iminopersulfinic) Tj ETQq1 American Chemical Society, 1997, 119, 4380-4387.	1 0.784314 13.7	rgBT /Overic 14
58	Geometry-Dependent Quenching of Singlet Oxygen by Dialkyl Disulfides. Journal of the American Chemical Society, 1997, 119, 9081-9082.	13.7	37
59	Reactions of Bis(p-methoxyphenyl)trisulfane and Its Oxides with Dimethyldioxirane and (Trifluoromethyl)methyldioxirane. Journal of Organic Chemistry, 1996, 61, 7911-7917.	3.2	16
60	Effect of Alcohols on the Photooxidative Behavior of Diethyl Sulfide. Journal of Organic Chemistry, 1996, 61, 4793-4797.	3.2	46
61	The Reactions of Sulfides and Sulfenic Acid Derivatives with Singlet Oxygen. Sulfur Reports, 1996, 19, 171-214.	0.4	26
62	Photooxidation of Sulfenic Acid Derivatives. 4. Reactions of Singlet Oxygen with Sulfenamides. Journal of the American Chemical Society, 1995, 117, 4218-4227.	13.7	24
63	Reaction of Singlet Oxygen with Thietane. A Novel Example of a Self-Catalyzed Reaction Which Provides Evidence for a Thiadioxirane Intermediate. Journal of the American Chemical Society, 1995, 117, 9800-9803.	13.7	25
64	Properties and Reactions of Singlet Dioxygen. , 1995, , 105-140.		99
65	Photooxidations of Sulfenic Acid Derivatives. 5. The Reaction of Singlet Oxygen with Ethyl Phenyl Sulfenate. Journal of Organic Chemistry, 1995, 60, 6444-6447.	3.2	16
66	Photooxidations of sulfenic acid derivatives 2. A remarkable solvent effect on the reactions of singlet oxygen with disulfides. Tetrahedron Letters, 1994, 35, 4723-4726.	1.4	37
67	Photooxidation of Sulfenic Acid Derivatives. 1. Sulfenamides. The Surprising Behavior of a New Class of Photooxidation Substrates. Journal of the American Chemical Society, 1994, 116, 809-810.	13.7	25
68	The origin of the sulfone in photooxidations involving sulfurane intermediates. Heteroatom Chemistry, 1993, 4, 197-201.	0.7	3
69	Remote participation during photooxidation at sulfur. Evidence for sulfurane intermediates. Journal of Organic Chemistry, 1992, 57, 4477-4487.	3.2	37
70	Comparison of the photooxidations of 1,5-dithiacyclooctane, 1,4-dithiane, and pentamethylene sulfide. Another example of remote participation during photooxidation at sulfur?. Journal of the American Chemical Society, 1992, 114, 3021-3027.	13.7	29
71	Kinetic implications of remote participation during photooxidation at sulfur. Journal of Organic Chemistry, 1991, 56, 5251-5252.	3.2	16
72	A comparison of the ene reactions of singlet oxygen and triazolinediones with alkyl substituted tetramethylethylenes Tetrahedron Letters, 1990, 31, 6759-6762.	1.4	14

#	Article	IF	CITATIONS
73	Oxygen-17 isotopic tracer evidence for the formation of a sulfurane intermediate during sulfide photooxidation. Journal of the American Chemical Society, 1990, 112, 4044-4046.	13.7	26
74	Steric and electronic effects on the conformations and singlet oxygen ene regiochemistries of substituted tetramethylethylenes. The origin of the geminal effect. Journal of the American Chemical Society, 1990, 112, 5193-5199.	13.7	44
75	Solvent effects on the ability of amines to physically quench singlet oxygen as determined by time-resolved infrared emission studies. Journal of Organic Chemistry, 1989, 54, 3581-3584.	3.2	60
76	Temperature, solvent, and substituent effects on the singlet oxidations of allylic phenyl sulfoxides, sulfones, and sulfides. Journal of the American Chemical Society, 1989, 111, 8212-8218.	13.7	22
77	Reactions of an allylic sulfide, sulfoxide, and sulfone with singlet oxygen. The observation of a remarkable diastereoselective oxidation. Journal of the American Chemical Society, 1989, 111, 5787-5792.	13.7	40
78	Dioxa-syn- and -anti-sesquinorbornenes. Singlet oxidation of exocyclic s-cis-1,3-butadienes. Journal of Organic Chemistry, 1987, 52, 3483-3485.	3.2	6
79	170 NMR spectra of 2-substituted and 2,5-di-substituted furans. The inapplicability of the hammett LFER to correlate chemical shifts. Magnetic Resonance in Chemistry, 1985, 23, 985-987.	1.9	16
80	A Computational Physical Organic Study of a Torque, Lock, and Propagate Approach and Validation with the Synthesis of Configurationally Stable Firstâ€Generation Heliâ€Twisted Acenes European Journal of Organic Chemistry, 0, , .	2.4	0